demographic stochasticity
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 34)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Vol 2 ◽  
Author(s):  
Delaney M. Costante ◽  
Aaron M. Haines ◽  
Matthias Leu

Our planet is home to an incredible array of species; however, relatively few studies have compared how anthropogenic threats impact taxonomic groups over time. Our objective was to identify temporal trends in threats facing the four most speciose phyla protected by the United States Endangered Species Act: angiosperms, arthropods, chordates, and mollusks. We determined presence or absence of threats for each species in these phyla by reviewing Final Rule listing decisions. For each phylum, we evaluated whether there was a linear, quadratic, or pseudo-threshold association between year of listing and the presence of 24 anthropogenic threats. We identified temporal trends for 80% of the 96 threat-phylum combinations. We classified threats as topmost (probability of being included in a species' listing decision peaking at ≥ 0.81) and escalating (probability of being included in a listing decision increasing by ≥ 0.81 between a species' first and most recent years of listing). Angiosperms, arthropods, and mollusks each had more topmost and escalating threats than chordates. Percentages of topmost threats were 42.9% (N = 21) for mollusks, 36.4% (N = 22) for angiosperms, and 33.3% (N = 21) for arthropods. Percentages of escalating threats were 22.7% (N = 22) for angiosperms and 14.3% (N = 21) for arthropods and mollusks. In contrast, percentages of topmost and escalating threats were only 4.2% (N = 24) for chordates, this one threat being climate change. Our research suggests potential conservation successes; some overutilization and pollution threats showed only gradually increasing or declining trends for certain phyla. We identified authorized take impacting angiosperms as the sole threat-phylum combination for which the threat had been consistently decreasing since the phylum's first year of listing. Conversely, species interactions, environmental stochasticity, and demographic stochasticity threats have seen drastic increases across all phyla; we suggest conservation efforts focus on these areas of increasing concern. We also recommend that resources be allocated to phyla with numerous topmost and escalating threats, not just to chordates.


2021 ◽  
Author(s):  
Stephen R Proulx ◽  
Henrique Teotonio

Gene flow between populations adapting to differing local environmental conditions creates a "migration load" because individuals might disperse to habitats where their survival is low or because they might reproduce with locally maladapted individuals. The amount by which the mean relative population fitness is kept below one creates an opportunity for modifiers of the genetic architecture to spread due to selection. Prior work that separately considered modifiers changing dispersal or recombination rates, or altering dominance or epistasis, has typically focused on the direction of selection rather than its absolute magnitude. We here develop methods to determine the strength of selection on modifiers of the genetic architecture, including modifiers of the dispersal rate, after populations evolved local adaptation. We consider scenarios with up to five loci contributing to local adaptation and derive a matrix model for the deterministic spread of modifiers. We find that selection for modifiers of epistasis and dominance is stronger than selection for decreased recombination, and that selection for partial reductions in recombination are extremely weak, regardless of the number of loci contributing to local adaptation. The spread of modifiers for a reduction in dispersal depends on the number of loci, pre-existing epistasis and extent of migration load. We identify a novel effect, that modifiers of dominance are more strongly selected when they are unlinked to the locus that they modify. Overall, these results help explain population differentiation and reproductive isolation and provide a benchmark to compare selection on genetic architecture modifiers in finite population sizes and under demographic stochasticity.


2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Jordan B. Bemmels ◽  
Else K. Mikkelsen ◽  
Oliver Haddrath ◽  
Rogan M. Colbourne ◽  
Hugh A. Robertson ◽  
...  

Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi ( Apteryx ), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation ( F ST ), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.


2021 ◽  
Author(s):  
◽  
Amelia Frances Geary

<p>Customary harvest of wildlife can be an important mechanism through which indigenous people maintain a connection with their environment. Observations built up during harvesting events are also a useful way of monitoring change over time. However, not all traditional societies have lived harmoniously with their environment. Wildlife populations can become depleted quickly if not managed sustainably. Using traditional knowledge interviews, empirical data from two island populations and population modelling, I examined the viability of two island sooty shearwater populations in the Marlborough Sounds and their resilience to resumed, low-level harvest. The biology of the sooty shearwater populations was found to closely resemble that of populations found at higher latitudes. Historic harvest by Marlborough Maori probably had an important influence on the size of present day Marlborough populations. Viability models demonstrated that these populations were experiencing very low or negative intrinsic rates of increase. Population sizes have likely been affected by previous harvest and are not at carrying capacity. The populations are therefore vulnerable to demographic stochasticity, environmental variability and extrinsic factors such as fisheries bycatch. The low and negative growth rates for populations at small sizes not at carrying capacity are of concern where harvesting is proposed. This study provides a basis for ongoing research into the population trajectories of each island population. Harvesting is possible in one population provided an appropriate monitoring regime is established prior to harvest being undertaken, to ensure the long-term viability of Marlborough Sounds' sooty shearwater populations.</p>


2021 ◽  
Author(s):  
◽  
Amelia Frances Geary

<p>Customary harvest of wildlife can be an important mechanism through which indigenous people maintain a connection with their environment. Observations built up during harvesting events are also a useful way of monitoring change over time. However, not all traditional societies have lived harmoniously with their environment. Wildlife populations can become depleted quickly if not managed sustainably. Using traditional knowledge interviews, empirical data from two island populations and population modelling, I examined the viability of two island sooty shearwater populations in the Marlborough Sounds and their resilience to resumed, low-level harvest. The biology of the sooty shearwater populations was found to closely resemble that of populations found at higher latitudes. Historic harvest by Marlborough Maori probably had an important influence on the size of present day Marlborough populations. Viability models demonstrated that these populations were experiencing very low or negative intrinsic rates of increase. Population sizes have likely been affected by previous harvest and are not at carrying capacity. The populations are therefore vulnerable to demographic stochasticity, environmental variability and extrinsic factors such as fisheries bycatch. The low and negative growth rates for populations at small sizes not at carrying capacity are of concern where harvesting is proposed. This study provides a basis for ongoing research into the population trajectories of each island population. Harvesting is possible in one population provided an appropriate monitoring regime is established prior to harvest being undertaken, to ensure the long-term viability of Marlborough Sounds' sooty shearwater populations.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Nao Takashina

Terrestrial and marine protected areas are essential tools in mitigating anthropogenic impacts and promoting population persistence and resource sustainability. Adequately implemented protected areas (PAs) aim to promote conservation by increasing population size and reducing its variability. To resolve how these effects depend on PA features, I develop and analyze new models of stochastic processes that encompass the fluctuations generated by demographic or environmental stochasticity in PAs management. The stochastic model is built upon individual processes. In the model, density-independent mortality, migration between PAs and non-PAs, organism preference for PAs, and size characterize the features of the PA. The effect of PAs size is also examined. The long-term conservation effects are quantified using the coefficient of variation (CV) of population size in PAs, where a lower CV indicates higher robustness in stochastic variations. The results from this study demonstrate that sufficiently reduced density-independent mortality in PAs and high site preference for PAs and immigration rate into PAs are likely to decrease the CV. However, different types of stochasticity induce rather different consequences: under demographic stochasticity, the CV is always reduced because PAs increase the population size therein, but an increased population size by PAs does not always decrease the CV under environmental stochasticity. The deterministic dynamics of the model are investigated, facilitating effective management decisions.


2021 ◽  
Author(s):  
Himani Sachdeva ◽  
Oluwafunmilola O Olusanya ◽  
Nick H Barton

We analyse how migration from a large mainland influences genetic load and population numbers on an island, in a scenario where fitness-affecting variants are unconditionally deleterious, and where numbers declines with increasing load. Our analysis shows that migration can have qualitatively different effects, depending on the total mutation target and fitness effects of deleterious variants. In particular, we find that populations exhibit a genetic Allee effect across a wide range of parameter combinations, when variants are partially recessive, cycling between low-load (large-population) and high-load (sink) states. Migration further reduces load in the sink state (by increasing heterozygosity) but increases load in the large-population state (by hindering purging). We identify various critical parameter thresholds at which one or other stable state collapses, and discuss how these thresholds are influenced by the genetic vs. demographic effects of migration. Our analysis is based on a 'semi-deterministic' analysis, which accounts for genetic drift but neglects demographic stochasticity. We also compare against simulations which account for both demographic stochasticity and drift. Our results clarify the importance of gene flow as a key determinant of extinction risk in peripheral populations, even in the absence of ecological gradients.


2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Miguel A. Cisneros-Mata ◽  
Juan A. Delgado ◽  
Demetrio Rodríguez-Félix

Introduction: Despite extensive science-based conservation policy recommendations, with fewer than 20 individuals remaining, the vaquita (Phocoena sinus) -endemic to the Gulf of California- is the world’s most endangered marine mammal due to incidental catch in fishing nets and whether it can recover is unclear. Objective: Assess expectations for vaquita over the next two decades. Methods: We identified factors affecting the vaquita, constructed life tables, derived demographic parameters for different scenarios and conducted a population viability analysis using stochastic age-structured matrix Leslie models. Results: Analytical results indicate that the vaquita net growth rate is particularly sensitive to juvenile survival. We find that intensive, ongoing bycatch in gillnets used to poach totoaba (Totoaba macdonaldi) over the past decade brought the vaquita population to its current critically low size. Currently this seems to be exacerbated by demographic stochasticity and a potential Allee effect. Conclusions: If totoaba poaching is eliminated immediately, demographically, vaquita can recover; its long-term survival will depend on its uncertain genetic status, although a recent study found encouraging results in this regard.


2021 ◽  
Author(s):  
David Garcia-Callejas ◽  
Ignasi Bartomeus ◽  
Oscar Godoy

The increase of species richness with area is a universal phenomenon on Earth. However, this observation contrasts with our poor understanding of how these species-area relationships (SARs) emerge from the collective effects of area, spatial heterogeneity, and local interactions. By combining a structuralist approach with five years of empirical observations in a highly-diverse grassland, we show that,contrary to expectations, spatial heterogeneity plays a little role in the accumulation of species richness with area in our system. Instead, as we increase the sampled area more species combinations are realized, and they coexist mainly due to direct pairwise interactions rather than by changes in single-species dominance or by indirect interactions. We also identify a small set of transient species with small population sizes that are consistently found across spatial scales. These findings empirically support the importance of the architecture of species interactions together with demographic stochasticity for driving SARs.


Sign in / Sign up

Export Citation Format

Share Document