scholarly journals Comparative modelling of crack propagation in elastic–plastic materials using the meshfree local radial basis point interpolation method and eXtended finite-element method

2019 ◽  
Vol 6 (11) ◽  
pp. 190543 ◽  
Author(s):  
Yazhe Li ◽  
Nengxiong Xu ◽  
Jinzhi Tu ◽  
Gang Mei

The modelling and understanding of crack propagation for elastic–plastic materials is critical in various engineering applications, such as safety analysis of concrete structures and stability analysis of rock slopes. In this paper, the local radial basis point interpolation method (LRPIM) combined with elastic–plastic theory and fracture mechanics is employed to analyse crack propagation in elastic–plastic materials. Crack propagation in elastic–plastic materials is compared using the LRPIM and eXtended finite-element method (XFEM). The comparative investigation indicates that: (i) the LRPIM results are close to the model test results, which indicates that it is feasible for analysing the crack growth of elastic–plastic materials; (ii) compared with the LRPIM, the XFEM results are closer to the experimental results, showing that the XFEM has higher accuracy and computational efficiency; and (iii) compared with the XFEM, when the LRPIM method is used to analyse crack propagation, the propagation path is not smooth enough, which can be explained as the crack tip stress and strain not being accurate enough and still needing further improvement.

2013 ◽  
Vol 10 (01) ◽  
pp. 1340006 ◽  
Author(s):  
S. LIU

We present an extended radial point interpolation method (XRPIM) for modeling cracks and material interfaces in two-dimensional elasto-static problems. Therefore, partition of unity enrichment is incorporated into RPIM. We employ both step enrichment and crack tip enrichment for cracks. The studies are restricted to stationary cracks though the method can be extended easily to moving boundaries. We compare the results to the extended finite element method to show the superiority of our method. We show for two selected problems that the error is of magnitudes lower compared to XFEM simulations.


Author(s):  
N. A. Nascimento ◽  
J. Belinha ◽  
R. M. Natal Jorge ◽  
D. E. S. Rodrigues

Cellular solid materials are progressively becoming more predominant in lightweight structural applications as more technologies realize these materials can be improved in terms of performance, quality control, repeatability and production costs, when allied with fast developing manufacturing technologies such as Additive Manufacturing. In parallel, the rapid advances in computational power and the use of new numerical methods, such as Meshless Methods, in addition to the Finite Element Method (FEM) are highly beneficial and allow for more accurate studies of a wide range of topologies associated with the architecture of cellular solid materials. Since these materials are commonly used as the cores of sandwich panels, in this work, two different topologies were designed — conventional honeycombs and re-entrant honeycombs — for 7 different values of relative density, and tested on the linear-elastic domain, in both in-plane directions, using the Natural Neighbor Radial Point Interpolation Method (NNRPIM), a newly developed meshless method, and the Finite Element Method (FEM) for comparison purposes.


2013 ◽  
Author(s):  
Sylvie Pommier ◽  
Anthony Gravouil ◽  
Alain Combescure ◽  
Nicolas Moës

Sign in / Sign up

Export Citation Format

Share Document