scholarly journals Limited thermal plasticity and geographical divergence in the ovipositor of Drosophila suzukii

2020 ◽  
Vol 7 (1) ◽  
pp. 191577
Author(s):  
Ceferino Varón-González ◽  
Antoine Fraimout ◽  
Arnaud Delapré ◽  
Vincent Debat ◽  
Raphaël Cornette

Phenotypic plasticity has been repeatedly suggested to facilitate adaptation to new environmental conditions, as in invasions. Here, we investigate this possibility by focusing on the worldwide invasion of Drosophila suzukii : an invasive species that has rapidly colonized all continents over the last decade. This species is characterized by a highly developed ovipositor, allowing females to lay eggs through the skin of ripe fruits. Using a novel approach based on the combined use of scanning electron microscopy and photogrammetry, we quantified the ovipositor size and three-dimensional shape, contrasting invasive and native populations raised at three different developmental temperatures. We found a small but significant effect of temperature and geographical origin on the ovipositor shape, showing the occurrence of both geographical differentiation and plasticity to temperature. The shape reaction norms are in turn strikingly similar among populations, suggesting very little difference in shape plasticity among invasive and native populations, and therefore rejecting the hypothesis of a particular role for the plasticity of the ovipositor in the invasion success. Overall, the ovipositor shape seems to be a fairly robust trait, indicative of stabilizing selection. The large performance spectrum rather than the flexibility of the ovipositor would thus contribute to the success of D. suzukii worldwide invasion.

2019 ◽  
Author(s):  
Ceferino Varón-González ◽  
Antoine Fraimout ◽  
Arnaud Delapré ◽  
Vincent Debat ◽  
Raphaël Cornette

AbstractPhenotypic plasticity has been repeatedly suggested to facilitate adaptation to new environmental conditions, as in invasions. Here we investigate this possibility by focusing on the worldwide invasion of Drosophila suzukii: an invasive species that has rapidly colonized all continents over the last decade. This species is characterized by a highly developed ovipositor, allowing females to lay eggs through the skin of ripe fruits. Using a novel approach based on the combined use of SEM and photogrammetry, we quantified the ovipositor size and 3D shape, contrasting invasive and native populations raised at three different developmental temperatures. We found a small but significant effect of temperature and geographic origin on the ovipositor shape, showing the occurrence of both geographic differentiation and plasticity to temperature. The shape reaction norms are in turn strikingly similar among populations, suggesting very little difference in shape plasticity among invasive and native populations, and therefore rejecting the hypothesis of a particular role for plasticity of the ovipositor in the invasion success. Overall, the ovipositor shape seems to be a fairly robust trait, indicative of stabilizing selection. The large performance spectrum rather than the flexibility of the ovipositor would thus contribute to the success of D. suzukii worldwide invasion.


2019 ◽  
Author(s):  
Ceferino Varón-González ◽  
Antoine Fraimout ◽  
Vincent Debat

ABSTRACTPhenotypic plasticity is an important mechanism allowing adaptation to new environments and as such it has been suggested to facilitate biological invasions. Under this assumption, invasive populations are predicted to exhibit stronger plastic responses than native populations. Drosophila suzukii is an invasive species whose males harbor a spot on the wing tip. In this study, by manipulating developmental temperature, we compare the phenotypic plasticity of wing spot size of two invasive populations with that of a native population. We then compare the results with data obtained from wild-caught flies from different natural populations. While both wing size and spot size are plastic to temperature, no difference in plasticity was detected between native and invasive populations, rejecting the hypothesis of a role of the wing-spot plasticity in the invasion success. In contrast we observed a remarkable stability in the spot-to-wing ratio across temperatures, as well as among geographic populations. This stability suggests either that the spot relative size is under stabilizing selection, or that its variation might be constrained by a tight developmental correlation between spot size and wing size. Our data show that this correlation was lost at high temperature, leading to an increased variation in the relative spot size, particularly marked in the two invasive populations. This suggests (i) that D. suzukii’s development is impaired by hot temperatures, in agreement with the cold-adapted status of this species; (ii) that the spot size can be decoupled from wing size, rejecting the hypothesis of an absolute constraint and suggesting that the wing color pattern might be under stabilizing (sexual) selection; (iii) that such sexual selection might be relaxed in the invasive populations. Finally, a subtle but consistent directional asymmetry in spot size was detected in favor of the right side in all populations and temperatures, possibly indicative of a lateralized sexual behavior.


2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


2017 ◽  
Author(s):  
Tatsuya Kitamura ◽  
Hironori Takemoto ◽  
Hisanori Makinae ◽  
Tetsutaro Yamaguchi ◽  
Kotaro Maki

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Albers ◽  
Angelika Svetlove ◽  
Justus Alves ◽  
Alexander Kraupner ◽  
Francesca di Lillo ◽  
...  

AbstractAlthough X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1629
Author(s):  
Colin H. Quinn ◽  
Andee M. Beierle ◽  
Elizabeth A. Beierle

In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.


Sign in / Sign up

Export Citation Format

Share Document