tumor microenvironments
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 222)

H-INDEX

36
(FIVE YEARS 12)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Nazely Diban ◽  
Marián Mantecón-Oria ◽  
María T. Berciano ◽  
Alba Puente-Bedia ◽  
María J. Rivero ◽  
...  

Abstract Background Recent advances from studies of graphene and graphene-based derivatives have highlighted the great potential of these nanomaterials as migrastatic agents with the ability to modulate tumor microenvironments. Nevertheless, the administration of graphene nanomaterials in suspensions in vivo is controversial. As an alternative approach, herein, we report the immobilization of high concentrations of graphene nanoplatelets in polyacrylonitrile film substrates (named PAN/G10) and evaluate their potential use as migrastatic agents on cancer cells. Results Breast cancer MCF7 cells cultured on PAN/G10 substrates presented features resembling mesenchymal-to-epithelial transition, e.g., (i) inhibition of migratory activity; (ii) activation of the expression of E-cadherin, cytokeratin 18, ZO-1 and EpCAM, four key molecular markers of epithelial differentiation; (iii) formation of adherens junctions with clustering and adhesion of cancer cells in aggregates or islets, and (iv) reorganization of the actin cytoskeleton resulting in a polygonal cell shape. Remarkably, assessment with Raman spectroscopy revealed that the above-mentioned events were produced when MCF7 cells were preferentially located on top of graphene-rich regions of the PAN/G10 substrates. Conclusions The present data demonstrate the capacity of these composite substrates to induce an epithelial-like differentiation in MCF7 breast cancer cells, resulting in a migrastatic effect without any chemical agent-mediated signaling. Future works will aim to thoroughly evaluate the mechanisms of how PAN/G10 substrates trigger these responses in cancer cells and their potential use as antimetastatics for the treatment of solid cancers. Graphical Abstract


2021 ◽  
Author(s):  
Javier Bonet-Aleta ◽  
Miguel Encinas ◽  
Esteban Urriolabeitia ◽  
Pilar Martin-Duque ◽  
Jose L Hueso ◽  
...  

The present work sheds light on a generally overlooked issue in the emerging field of bio-orthogonal catalysis within tumor microenvironments (TMEs): the interplay between homogeneous and heterogeneous catalytic processes. In most cases, previous works dealing with nanoparticle-based catalysis in the TME, focus on the effects obtained (e.g. tumor cell death) and attribute the results to heterogeneous processes alone. The specific mechanisms are rarely substantiated and, furthermore, the possibility of a significant contribution of homogeneous processes by leached species –and the complexes that they may form with biomolecules- is neither contemplated nor pursued. Herein, we have designed a bimetallic catalyst nanoparticle containing Cu and Fe species and we have been able to describe the whole picture in a more complex scenario where both homogeneous and heterogeneous processes are coupled and fostered under TME relevant chemical conditions. We investigate the preferential leaching of Cu ions in the presence of a TME overexpressed biomolecule such as glutathione (GSH). We demonstrate that these homogeneous processes initiated by the released by Cu-GSH interactions are in fact responsible for the greater part of the cell death effects found (GSH, a scavenger of reactive oxygen species is depleted and highly active superoxide anions are generated in the same catalytic cycle). The remaining solid CuFe nanoparticle becomes an active catalase-mimicking surrogate able to supply oxygen from oxygen reduced species, such as superoxide anions (by-product from GSH oxidation) and hydrogen peroxide, another species that is enriched in the TME. This enzyme-like activity is essential to sustain the homogeneous catalytic cycle in the oxygen-deprived tumor microenvironment. The combined heterogeneous-homogeneous mechanisms revealed themselves as highly efficient in selectively killing cancer cells, due to their higher GSH levels compared to healthy cell lines.


2021 ◽  
Vol 23 (1) ◽  
pp. 8
Author(s):  
Beáta Soltész ◽  
Gergely Buglyó ◽  
Nikolett Németh ◽  
Melinda Szilágyi ◽  
Ondrej Pös ◽  
...  

Early detection, characterization and monitoring of cancer are possible by using extracellular vesicles (EVs) isolated from non-invasively obtained liquid biopsy samples. They play a role in intercellular communication contributing to cell growth, differentiation and survival, thereby affecting the formation of tumor microenvironments and causing metastases. EVs were discovered more than seventy years ago. They have been tested recently as tools of drug delivery to treat cancer. Here we give a brief review on extracellular vesicles, exosomes, microvesicles and apoptotic bodies. Exosomes play an important role by carrying extracellular nucleic acids (DNA, RNA) in cell-to-cell communication causing tumor and metastasis development. We discuss the role of extracellular vesicles in the pathogenesis of cancer and their practical application in the early diagnosis, follow up, and next-generation treatment of cancer patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luke A. Moradi ◽  
Curtis A. Clark ◽  
Craig S. Schneider ◽  
Alok S. Deshane ◽  
Michael C. Dobelbower

Immune checkpoint inhibitors (ICIs) and radiotherapy (RT) combinations for various metastatic cancers are increasingly utilized, yet the augmentation of anti-cancer immunity including distant tumor responses by RT remains ill-characterized. Immunosuppressive tumor microenvironments and defective anti-tumor immune activation including immune-related adverse events (irAEs) likely limit dramatic immuno-radiotherapy combinations, though it remains unclear which immune characteristics mediate dramatic systemic tumor regression in only a small subset of patients. Moreover, the efficacy of ICI treatment in patients receiving immunosuppressive therapies for autoimmune conditions or irAEs is convoluted, yet clinically valuable. Here, we report a case of a 75-year-old man with myasthenia gravis and metastatic melanoma who experienced complete and durable systemic regression after receiving pembrolizumab and single-lesion RT while on prednisone for myasthenia gravis prophylaxis and vedolizumab for immune-mediated colitis after previously experiencing mixed response on pembrolizumab monotherapy. We discuss the potential paradoxical effects and clinical considerations of immunosuppressive regimens in patients with underlying autoimmune disease or adverse immune reactions while receiving immuno-radiotherapy combinations.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5752
Author(s):  
Emma H. Allott ◽  
Kellie Dean ◽  
Tracy Robson ◽  
Claire Meaney

Our understanding of cancer initiation, progression, and treatment is continually progressing through dedicated research achieved through laboratory investigation, clinical trials, and patient engagement. The importance and complexity of the microenvironment and its role in tumor development and behavior is pivotal to the understanding of tumor growth and the best course of treatment. The 57th Irish Association for Cancer Research (IACR) Annual Conference collected key researchers, clinicians, and patient advocates together to highlight and discuss the recognized importance of the microenvironment and treatment advances in cancer. In this article, we describe the key components of the microenvironment that influence tumor development and treatment, including the microbiome, metabolism, and immune response and the progress of preclinical models to reflect these complex environments. From a psycho-social oncology perspective, we highlight expert opinion and data on the process of shared decision-making in the context of emerging cancer treatments.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3155
Author(s):  
Gautam N. Shenoy ◽  
Maulasri Bhatta ◽  
Richard B. Bankert

Exosomes are a subset of extracellular vesicles (EVs) that are released by cells and play a variety of physiological roles including regulation of the immune system. Exosomes are heterogeneous and present in vast numbers in tumor microenvironments. A large subset of these vesicles has been demonstrated to be immunosuppressive. In this review, we focus on the suppression of T cell function by exosomes in human tumor microenvironments. We start with a brief introduction to exosomes, with emphasis on their biogenesis, isolation and characterization. Next, we discuss the immunosuppressive effect of exosomes on T cells, reviewing in vitro studies demonstrating the role of different proteins, nucleic acids and lipids known to be associated with exosome-mediated suppression of T cell function. Here, we also discuss initial proof-of-principle studies that established the potential for rescuing T cell function by blocking or targeting exosomes. In the final section, we review different in vivo models that were utilized to study as well as target exosome-mediated immunosuppression, highlighting the Xenomimetic mouse (X-mouse) model and the Omental Tumor Xenograft (OTX) model that were featured in a recent study to evaluate the efficacy of a novel phosphatidylserine-binding molecule for targeting immunosuppressive tumor-associated exosomes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Husam Babikir ◽  
Lin Wang ◽  
Karin Shamardani ◽  
Francisca Catalan ◽  
Sweta Sudhir ◽  
...  

Abstract Background Recent single-cell transcriptomic studies report that IDH-mutant gliomas share a common hierarchy of cellular phenotypes, independent of genetic subtype. However, the genetic differences between IDH-mutant glioma subtypes are prognostic, predictive of response to chemotherapy, and correlate with distinct tumor microenvironments. Results To reconcile these findings, we profile 22 human IDH-mutant gliomas using scATAC-seq and scRNA-seq. We determine the cell-type-specific differences in transcription factor expression and associated regulatory grammars between IDH-mutant glioma subtypes. We find that while IDH-mutant gliomas do share a common distribution of cell types, there are significant differences in the expression and targeting of transcription factors that regulate glial identity and cytokine elaboration. We knock out the chromatin remodeler ATRX, which suffers loss-of-function alterations in most IDH-mutant astrocytomas, in an IDH-mutant immunocompetent intracranial murine model. We find that both human ATRX-mutant gliomas and murine ATRX-knockout gliomas are more heavily infiltrated by immunosuppressive monocytic-lineage cells derived from circulation than ATRX-intact gliomas, in an IDH-mutant background. ATRX knockout in murine glioma recapitulates gene expression and open chromatin signatures that are specific to human ATRX-mutant astrocytomas, including drivers of astrocytic lineage and immune-cell chemotaxis. Through single-cell cleavage under targets and tagmentation assays and meta-analysis of public data, we show that ATRX loss leads to a global depletion in CCCTC-binding factor association with DNA, gene dysregulation along associated chromatin loops, and protection from therapy-induced senescence. Conclusions These studies explain how IDH-mutant gliomas from different subtypes maintain distinct phenotypes and tumor microenvironments despite a common lineage hierarchy.


Sign in / Sign up

Export Citation Format

Share Document