scholarly journals Effect of pH regulation by sulfate-reducing bacteria on corrosion behaviour of duplex stainless steel 2205 in acidic artificial seawater

2021 ◽  
Vol 8 (1) ◽  
pp. 200639
Author(s):  
T. T. T. Tran ◽  
K. Kannoorpatti ◽  
A. Padovan ◽  
S. Thennadil

Sulfate-reducing bacteria (SRB) can regulate environmental pH because of their metabolism. Because local acidification results in pitting corrosion, the potential capacity of pH regulation by SRB would have important consequences for electrochemical aspects of the bio-corrosion process. This study focused on identifying the effect of pH on the corrosion of duplex stainless steel 2205 in a nutrient-rich artificial seawater medium containing SRB species, Desulfovibrio vulgaris . Duplex stainless steel samples were exposed to the medium for 13 days at 37°C at pH ranging from 4.0 to 7.4. The open-circuit potential value, sulfide level, pH and number of bacteria in the medium were recorded daily. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to study the properties of the biofilms at the end of the experiments and the corrosion behaviour of the material. Inductively coupled plasma mass spectrometry was used to measure the concentration of cations Fe, Ni, Mo, Mn, Cr in the experimental solution after 13 days. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX) were used for surface analysis. The results showed the pH changed from acidic values set at the beginning of the experiment to approximately pH 7.5 after 5 days owing to bacterial metabolism. After 13 days, the highest iron concentration was in the solution that was initially at pH 4 accompanied by pitting on the stainless steel. Sulfur was present on all specimens but with more sulfur at pH 4 in the EDX spectra. EIS showed the film resistance of the specimen at pH 4 was much lower than at pH 7.4 which suggests the corrosion resistance of the stainless steel was better at higher pH. The results of this study suggest that the corrosion process for the first few days exposure at low pH was driven by pH in solution rather than by bacteria. The increasing pH during the course of the experiment slowed down the corrosion process of materials originally at low pH. The nature and mechanism of SRB attack on duplex stainless steel at different acidic environments are discussed.

2020 ◽  
Vol 10 (15) ◽  
pp. 5043
Author(s):  
Tien Tran Thi Thuy ◽  
Krishnan Kannoorpatti ◽  
Anna Padovan ◽  
Suresh Thennadil

Sulphate reducing bacteria (SRB) can be found in alkaline environments. Due to their metabolite products such as hydrogen sulphide, the corrosion behaviour of materials in alkaline environments may be affected by the presence of SRB. This study focuses on the investigation of corrosion behaviour of duplex stainless steel DSS 2205 in nutrient rich artificial seawater containing SRB species, Desulfovibrio vulgaris, at different alkaline conditions with pH range from 7 to 10. The open circuit potential value (OCP), sulphide level and pH were recorded daily. Confocal laser scanning microscopy (CLSM) was used to study the adhesion of SRB on the DSS 2205 surface. Electrochemical impedance spectroscopy (EIS) was used to study the properties of the biofilm. Potentiodynamic polarization was used to study the corrosion behaviour of material. Inductively coupled plasma mass was used to measure the concentration of cations Fe, Ni, Mo, Mn in the experimental solution after 28 days. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used for surface analysis. The results showed that D. vulgaris are active in an alkaline environment with pH 7–9. However, at pH 10, D. vulgaris activity exhibited an 8-day lag. The corrosion rate of DSS 2205 at pH 9 was higher than at other pH environments due to a higher dissolved concentration of hydrogen sulphide.


2021 ◽  
Vol 63 (6) ◽  
pp. 505-511
Author(s):  
Songkran Vongsilathai ◽  
Anchaleeporn Waritswat Lothongkum ◽  
Gobboon Lothongkum

Abstract A new duplex 25Cr-3Ni-7Mn-0.66 N alloy was prepared in a vacuum arc re-melting furnace and characterized by metallographic and EPMA methods. Its corrosion behavior was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and a Mott-Schottky (M-S) analysis in artificial seawater at room temperature and compared with those of super and normal commercial duplex stainless steel (SDSS and DSS). No significant difference in the open circuit potentials and pitting potentials was observed. Its passive film current density lies between those of SDSS and DSS. This was confirmed by EIS analysis. A pit attack was observed on the δ-phase for all duplex samples, because the PREN16 of the δ-phase was lower than that of the γ-phase. From the Mott-Schottky analysis, the passive films were found to be composed of bi-layer structures, a p-type semiconductor inner layer, and a n-type semiconductor outer layer. The degree of defect as well as the effect of nitrogen in passive film layer are discussed with respect to the point defect model.


Sign in / Sign up

Export Citation Format

Share Document