scholarly journals Flow through pipe orifices at low Reynolds numbers

Most of the experimental work in connection with the flow of fluids through diaphragm orifices in pipe lines has been directed to the establishment of the orifice as a flow meter, and has been carried out at the velocities of flow commonly encountered in commercial practice. As a result of such research the coefficients relating the volumetric discharge of incompressible fluids to the differential head across an orifice are well known over a large range of high Reynolds numbers. For a particular diameter ratio ( i. e., orifice diameter ÷ diameter of pipe line) the discharge coefficient is nearly constant under conditions of turbulent flow. Over the range from steady to turbulent flow, however, very appreciable variations occur in the value of the discharge coefficient, suggest­ing that the accompanying variations in the nature of the flow through and beyond the orifice will be no less marked. As regards the turbulent flow pattern, an investigation, in which the author collaborated, of the airflow downstream of a flat plate suggests that an orifice in a pipe will in general give rise to a vortex system, probably having some points of resemblance to the well-known Kármán street which is a feature of the two-dimensional flow past a bluff obstacle, but doubtless exhibiting interesting differences arising from the symmetrical and three-dimensional character of the flow through an orifice. At sufficiently low Reynolds numbers, on the other hand, perfect flow free from periodic vorticity will occur. The stages connecting these two extreme conditions present many points of interest not only as regards the nature of the vortex system downstream of the orifice and the conditions of flow covering its inception, but also as regards the accom­panying pressure-velocity relation during the transition.

AIP Advances ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 015142
Author(s):  
Yuhang Zhang ◽  
Rui Wang ◽  
Yaoran Chen ◽  
Yan Bao ◽  
Zhaolong Han ◽  
...  

2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


2011 ◽  
Vol 66 (6-7) ◽  
pp. 450-456
Author(s):  
Chris Goddard ◽  
Ortwin Hess

A generic nonlinear Maxwell model for the stress tensor in viscoelastic materials is studied under mixing scenarios in a three-dimensional steady lid-driven cavity flow. Resulting laminar and turbulent flow profiles are investigated to study their mixing efficiencies. Massless tracer particles and passive concentrations are included to show that the irregular spatio-temporal chaos, present in turbulent flow, is useful for potential mixing applications. A Lyapunov measure for filament divergence confirms that the turbulent flow is more efficient at mixing


AIP Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 085213
Author(s):  
Ali Zargartalebi ◽  
Mohammad Zargartalebi ◽  
Anne M. Benneker

Sign in / Sign up

Export Citation Format

Share Document