tracer particles
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 80)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 933 ◽  
Author(s):  
Kristin N. Travis ◽  
Sarah E. Smith ◽  
Laure Vignal ◽  
Henda Djeridi ◽  
Mickaël Bourgoin ◽  
...  

This study presents the findings of a wind tunnel experiment investigating the behaviour of micrometric inertial particles with Stokes numbers around unity in the turbulent wake of a stationary porous disk. Various concentrations $\varPhi _{v}\in ([6-19] \times 10^{-6})$ of poly-disperse water droplets (average diameter 40–50  $\mathrm {\mu }$ m) are compared with sub-inertial tracer particles. Hot-wire anemometry, phase Doppler interferometry and particle image velocimetry were implemented in the near- and far-wake regions to study the complex dynamics of such particles. Quadrant analysis is used to explore the shear effects of the particle wake interaction. Turbulence statistics and particle size distributions reveal distinct differences in the structure of the wake when inertial particles are present in the flow. Additionally, there are different structures in the near and far wake regions and structures change with particle volume fraction.


2021 ◽  
Author(s):  
Sofia Magkiriadou ◽  
Amanda Habel ◽  
Willi L. Stepp ◽  
Dianne K. Newman ◽  
Suliana Manley ◽  
...  

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP′s many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we characterize the motion of chromosomal loci and free tracer particles in the cytoplasm. In the absence of polyP and upon starvation, we observe an increase in mobility both for chromosomal loci and for tracer particles. Tracer particles reveal that polyP also modulates the partitioning between a ′more mobile′ and a ′less mobile′ population: small particles in cells unable to make polyP are more likely to be ′mobile′ and explore more of the cytoplasm, particularly during starvation. We speculate that this larger freedom of motion may be a consequence of nucleoid decompaction, which we also observe in starved cells deficient in polyP. Our observations suggest that polyP limits cytoplasmic mobility and accessibility during nitrogen starvation, which may help to explain the pleiotropic phenotypes observed in the absence of polyP.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Simo A. Mäkiharju ◽  
Jan Dewanckele ◽  
Marijn Boone ◽  
Christian Wagner ◽  
Andreas Griesser

Abstract We investigate the feasibility of in-laboratory tomographic X-ray particle tracking velocimetry (TXPTV) and consider creeping flows with nearly density matched flow tracers. Specifically, in these proof-of-concept experiments we examined a Poiseuille flow, flow through porous media and a multiphase flow with a Taylor bubble. For a full 360$$^\circ$$ ∘ computed tomography (CT) scan we show that the specially selected 60 micron tracer particles could be imaged in less than 3 seconds with a signal-to-noise ratio between the tracers and the fluid of 2.5, sufficient to achieve proper volumetric segmentation at each time step. In the pipe flow, continuous Lagrangian particle trajectories were obtained, after which all the standard techniques used for PTV or PIV (taken at visible wave lengths) could also be employed for TXPTV data. And, with TXPTV we can examine flows inaccessible with visible wave lengths due to opaque media or numerous refractive interfaces. In the case of opaque porous media we were able to observe material accumulation and pore clogging, and for flow with Taylor bubble we can trace the particles and hence obtain velocities in the liquid film between the wall and bubble, with thickness of liquid film itself also simultaneously obtained from the volumetric reconstruction after segmentation. While improvements in scan speed are anticipated due to continuing improvements in CT system components, we show that for the flows examined even the presently available CT systems could yield quantitative flow data with the primary limitation being the quality of available flow tracers. Graphic abstract


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 111
Author(s):  
Denis Wittor ◽  
Matthias Hoeft ◽  
Marcus Brüggen

Radio relics are diffuse synchrotron sources that illuminate shock waves in the intracluster medium. In recent years, radio telescopes have provided detailed observations about relics. Consequently, cosmological simulations of radio relics need to provide a similar amount of detail. In this methodological work, we include information on adiabatic compression and expansion, which have been neglected in the past in the modelling of relics. In a cosmological simulation of a merging galaxy cluster, we follow the energy spectra of shock accelerated cosmic-ray electrons using Lagrangian tracer particles. On board of each tracer particle, we compute the temporal evolution of the energy spectrum under the influence of synchrotron radiation, inverse Compton scattering, and adiabatic compression and expansion. Exploratory tests show that the total radio power and, hence, the integrated radio spectrum are not sensitive to the adiabatic processes. This is attributed to small changes in the compression ratio over time.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0246916
Author(s):  
Sean M. Kinahan ◽  
David B. Silcott ◽  
Blake E. Silcott ◽  
Ryan M. Silcott ◽  
Peter J. Silcott ◽  
...  

The COVID-19 pandemic has reintroduced questions regarding the potential risk of SARS-CoV-2 exposure amongst passengers on an aircraft. Quantifying risk with computational fluid dynamics models or contact tracing methods alone is challenging, as experimental results for inflight biological aerosols is lacking. Using fluorescent aerosol tracers and real time optical sensors, coupled with DNA-tagged tracers for aerosol deposition, we executed ground and inflight testing on Boeing 767 and 777 airframes. Analysis here represents tracer particles released from a simulated infected passenger, in multiple rows and seats, to determine the exposure risk via penetration into breathing zones in that row and numerous rows ahead and behind the index case. We present here conclusions from 118 releases of fluorescent tracer particles, with 40+ Instantaneous Biological Analyzer and Collector sensors placed in passenger breathing zones for real-time measurement of simulated virus particle penetration. Results from both airframes showed a minimum reduction of 99.54% of 1 μm aerosols from the index source to the breathing zone of a typical passenger seated directly next to the source. An average 99.97 to 99.98% reduction was measured for the breathing zones tested in the 767 and 777, respectively. Contamination of surfaces from aerosol sources was minimal, and DNA-tagged 3 μm tracer aerosol collection techniques agreed with fluorescent methodologies.


Author(s):  
Rodrigo de Lima Amaral ◽  
Vítor Augusto Andreghetto Bortolin ◽  
Bernardo Luiz Harry Diniz Lemos ◽  
Marcelo Mazzetto ◽  
Idágene A Cestari ◽  
...  

Abstract The base of particle image velocimetry (PIV) is the maximization of the correlation between the distribution of particle images in an interrogation window or a volume separated by an instant of time. In real images, the unwanted reflection of light on fixed walls or moving objects can directly interfere with the correlation, deteriorating the PIV quality. In this work, a new method for automatically generating instantaneous masks based on the Otsu threshold for instantaneous elimination of light reflection in PIV images is proposed. This method separates the saturated image caused by the unwanted scattering of light from the tracer particles images through the Otsu threshold combined with the Gauss filter and Wiener adaptive local filter. This new method, called Otsu-Gauss-Wiener (OGW), was first tested using synthetic PIV images. In these tests, the authors analyzed the reflection caused by an object regarding different sizes, shapes, and intensities to evaluate the performance of the proposed method. Later, the OGW method was tested in PIV experimental cases with real adversities, for example, scattering of light on a fixed wall in a channel with periodic hills (Case B – 4th PIV Challenge), strong reflection in a centrifugal impeller (Case C – 1st PIV Challenge) and light scattering caused by an out-of-plane motion of the diaphragm of a pulsatile pediatric ventricular assist device. The results shown that the method can remove the reflections by static and moving objects using an automatic mask generated for each instantaneous image.


Author(s):  
H. J. Biggs ◽  
B. Smith ◽  
M. Detert ◽  
H. Sutton

A novel aerial tracer particle distribution system has been developed. This system is mounted on an Unmanned Aerial Vehicle (UAV) and flown upstream from where surface velocimetry measurements are conducted. This enables surface velocimetry techniques to be applied in rivers and channels lacking sufficient natural tracer particles or surface features. Lack of tracers is a common problem during low flows, in lowland rivers, or in artificial channels. This is particularly problematic for analysis conducted using Particle Image Velocimetry (PIV) techniques where dense tracer particles are required. Techniques for colouring tracer particles with biodegradable dye have also been developed, along with methods for extracting them from Red Green Blue (RGB) imagery in the Hue Saturation Value (HSV) colour space. The use of coloured tracer particles enables flow measurements in situations where sunglint, surface waves, moving shadows, or dappled lighting on riverbeds can interfere with and corrupt results using surface velocimetry techniques. These developments further expand the situations where surface velocimetry can be applied, as well as improving the accuracy of the results.


2021 ◽  
Vol 922 (1) ◽  
pp. 79
Author(s):  
H Perry Hatchfield ◽  
Mattia C. Sormani ◽  
Robin G. Tress ◽  
Cara Battersby ◽  
Rowan J. Smith ◽  
...  

Abstract The Galactic bar plays a critical role in the evolution of the Milky Way’s Central Molecular Zone (CMZ), driving gas toward the Galactic Center via gas flows known as dust lanes. To explore the interaction between the CMZ and the dust lanes, we run hydrodynamic simulations in arepo, modeling the potential of the Milky Way’s bar in the absence of gas self-gravity and star formation physics, and we study the flows of mass using Monte Carlo tracer particles. We estimate the efficiency of the inflow via the dust lanes, finding that only about a third (30% ± 12%) of the dust lanes’ mass initially accretes onto the CMZ, while the rest overshoots and accretes later. Given observational estimates of the amount of gas within the Milky Way’s dust lanes, this suggests that the true total inflow rate onto the CMZ is 0.8 ± 0.6 M ⊙ yr−1. Clouds in this simulated CMZ have sudden peaks in their average density near the apocenter, where they undergo violent collisions with inflowing material. While these clouds tend to counter-rotate due to shear, co-rotating clouds occasionally occur due to the injection of momentum from collisions with inflowing material (∼52% are strongly counter-rotating, and ∼7% are strongly co-rotating of the 44 cloud sample). We investigate the formation and evolution of these clouds, finding that they are fed by many discrete inflow events, providing a consistent source of gas to CMZ clouds even as they collapse and form stars.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1790
Author(s):  
Michal Malík ◽  
Jiří Primas ◽  
Petr Schovanec ◽  
Josef Novák ◽  
Pavel Pokorný ◽  
...  

While examining the airflow generated between the asymmetrical electrodes connected to high voltage, the authors investigated the possible limitations of the particle image velocimetry (PIV) method in the presence of strong electric fields. The tracer particles used in the PIV method in these conditions are affected by electromagnetic forces; therefore, it is necessary to determine whether these forces have any non-negligible negative influence on the measurement results. For this purpose, the authors theoretically analyzed all the possible forces and measured the generated airflow using PIV and constant temperature anemometry methods. The experimental and theoretical results clearly show the viability of the PIV measurement method even in these very specific conditions.


Author(s):  
Xiongliang Yao ◽  
Xianghong Huang ◽  
Zeyu Shi ◽  
Wei Xiao ◽  
Kainan Huang

When a research ship sails at a high speed, there is relative motion between the ship and fluid. The ship is slammed by the fluid. To reduce the direct impact of the fluid, sonar is installed in the moonpool, and acoustic detection equipment is installed along the research ship bottom behind the moonpool. However, during high-speed sailing, a large number of bubbles form in the moonpool. Some bubbles escape from the moonpool and flow backward along the bottom of the ship. When a large number of bubbles are around the sonar and acoustic detection equipment, the equipment malfunctions. However, there have been few studies on bubble formation in the moonpool with sonar and distribution along the ship bottom behind the moonpool. Therefore, a related model was developed and prototype tests were carried out in this study. The appropriate similarity criteria were selected and verified to ensure the reliability of the experiment. Considering the influences of speed, sonar, moonpool shape, and draft, the reason and mechanism of bubble formation in a sonar moonpool were studied. An artificial ventilation method was used to simulate a real navigation environment. Because the bubbles are in a bright state under laser irradiation, the bubbles can be used as tracer particles. A high-speed camera captured illuminated bubbles. The distribution mechanism of bubbles along the ship bottom behind the moonpool was investigated using particle image velocimetry under the influence of the moonpool shape and sailing speed. The model experimental results agreed well with those of the prototype test. The air sucked into the water was the dominant factor in bubble formation in the moonpool. The bubbles were distributed in a W shape under the ship bottom.


Sign in / Sign up

Export Citation Format

Share Document