On the interaction of two electrons

A relativistic wave equation for helium-like systems which gives energy levels correct to within α 2 Ry is derived from quantum electrodynamics, care being taken in the handling of pair-production processes. Calculations made with it agree to this accuracy with Breit’s calculations.

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 467
Author(s):  
Fayçal Hammad ◽  
Alexandre Landry ◽  
Parvaneh Sadeghi

The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed.


1952 ◽  
Vol 48 (1) ◽  
pp. 110-117
Author(s):  
K. J. Le Couteur

AbstractIt is proved that the matrix algebra for any relativistic wave equation of half-odd integral spin can be factorized as the direct product of a Dirac algebra and another, called a ξ-algebra. The structure and representation of ξ-algebras are studied in detail. The factorization simplifies calculations with particles of spin > ½, because the ξ-algebra contains only one-sixteenth as many elements as the original matrix algebra.


Sign in / Sign up

Export Citation Format

Share Document