relativistic wave equation
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sangwha Yi

Klein-Gordon equation is a relativistic wave equation. It treats spinless particle. The wave functioncannot use as a probability amplitude. We made Klein-Gordon equation in Rindler space-time. In this paper,we make free particle’s wave function as the solution of Klein-Gordon equation in Rindler space-time.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 467
Author(s):  
Fayçal Hammad ◽  
Alexandre Landry ◽  
Parvaneh Sadeghi

The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Weixuan Zhang ◽  
Hao Yuan ◽  
Wenjing He ◽  
Xingen Zheng ◽  
Na Sun ◽  
...  

AbstractRelativistic quantum mechanics has been developed for nearly a century to characterize the high-energy physics in quantum domain, and various intriguing phenomena without low-energy counterparts have been revealed. Recently, with the discovery of Dirac cone in graphene, quantum materials and their classical analogies provide the second approach to exhibit the relativistic wave equation, making large amounts of theoretical predications become reality in the lab. Here, we experimentally demonstrate a third way to get into the relativistic physics. Based on the extended one-dimensional Bose-Hubbard model, we show that two strongly correlated bosons can exhibit Dirac-like phenomena, including the Zitterbewegung and Klein tunneling, in the presence of giant on-site and nearest-neighbor interactions. By mapping eigenstates of two correlated bosons to modes of designed circuit lattices, the interaction-induced Zitterbewegung and Klein tunneling are verified by measuring the voltage dynamics. Our finding not only demonstrates a way to exhibit the relativistic physics, but also provides a flexible platform to further investigate many interesting phenomena related to the particle interaction in experiments.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 180
Author(s):  
Haifa I. Alrebdi ◽  
Thabit Barakat

For further insight into the perturbation technique within the framework of the asymptotic iteration method (PAIM), we suggest this method to be used as an alternative method to the traditional well-known perturbation techniques. We show by means of very simple algebraic manipulations that PAIM can be directly applied to obtain the symbolic expectation value of any perturbed potential piece without using the eigenfunction of the unperturbed problem. One of the fundamental advantages of PAIM is its ability to extract a reference unperturbed potential piece or pieces from the total Hamiltonian which can be solved exactly within AIM. After all, one can easily compute the symbolic expectation values of the remaining potential pieces. As an example, the present scheme is applied to the semi-relativistic wave equation with the harmonic-oscillator potential implemented with the Fermi–Breit potential terms. In particular, the non-trivial symbolic expectation values of the Dirac delta function, and the momentum-dependent orbit–orbit coupling terms are successfully calculated. Results are then used, as an illustration, to compute the semi-relativistic s-wave heavy-light meson masses. We obtain good agreement with experimental data for the meson mass splittings cu¯, cd¯, cs¯, bu¯, bd¯, bs¯.


Author(s):  
Faizuddin Ahmed

In this work, we study a Klein-Gordon oscillator subject to Cornelltype potential in the background of the Lorentz symmetry violation determined by a tensor out of the Standard Model Extension. We introduce a Cornell-type potential S(r) = (η_L\,r + \frac{η_c}{r} ) by modifying the mass term via transformation $M → M + S(r)$ and then coupled oscillator with scalar particle by replacing the momentum operator $\vec{p}→ (\vec{p}+ i\,M\,ω\,\vec{r})$ in the relativistic wave equation. We see that the analytical solution to the Klein-Gordon oscillator equation can be achieved, and a quantum effect characterized by the dependence of the angular frequency of the oscillator on the quantum numbers of the relativistic system is observed


Author(s):  
Faizuddin Ahmed

In this work, quantum dynamics of a spin-0 particle under the effects of Lorentz symmetry violation in the presence of Coulombtype non-electromagnetic potential $(S(r) ∝ \frac{1}{r})$ is investigated. The non-electromagnetic (or scalar) potential is introduced by modifying the mass term via transformation $M → M + \frac{η_c}{r}$ in the relativistic wave equation. The linear central potential induced by the Lorentz symmetry violation is a linear radial electric and constant magnetic field and, analyze the effects on the spectrum of energy and the wave function


Author(s):  
Salvatore De Vincenzo

Abstract In general, the relativistic wave equation considered to mathematically describe the so-called Majorana particle is the Dirac equation with a real Lorentz scalar potential plus the so-called Majorana condition. Certainly, depending on the representation that one uses, the resulting differential equation changes. It could be a real or a complex system of coupled equations, or it could even be a single complex equation for a single component of the entire wave function. Any of these equations or systems of equations could be referred to as a Majorana equation or Majorana system of equations because it can be used to describe the Majorana particle. For example, in the Weyl representation, in (3+1) dimensions, we can have two non-equivalent explicitly covariant complex first-order equations; in contrast, in (1+1) dimensions, we have a complex system of coupled equations. In any case, whichever equation or system of equations is used, the wave function that describes the Majorana particle in (3+1) or (1+1) dimensions is determined by four or two real quantities. The aim of this paper is to study and discuss all these issues from an algebraic point of view, highlighting the similarities and differences that arise between these equations in the cases of (3+1) and (1+1) dimensions in the Dirac, Weyl, and Majorana representations. Additionally, to reinforce this task, we rederive and use results that come from a procedure already introduced by Case to obtain a two-component Majorana equation in (3+1) dimensions. Likewise, we introduce for the first time a somewhat analogous procedure in (1+1) dimensions and then use the results we obtain.


Author(s):  
A. V. Ivashkevich ◽  
Ya. A. Voynova ◽  
E. M. Оvsiyuk ◽  
V. V. Kisel ◽  
V. M. Red’kov

The relativistic wave equation is well-known for a spin 3/2 particle proposed by W. E. Pauli and M. E. Fierz and based on the 16-component wave function with the transformation properties of the vector-bispinor. In this paper, we investigated the nonrelativistic approximation in this theory. Starting with the first-order equation formalism and representation of Pauli – Fierz equation in the Petras basis, also applying the method of generalized Kronecker symbols and elements of the complete matrix algebras, and decomposing the wave function into large and small nonrelativistic constituents with the help of projective operators, we have derived a Pauli-like equation for the 4-component wave function describing the non-relativistic particle with a 3/2 spin.


Sign in / Sign up

Export Citation Format

Share Document