Ion–polar molecule encounters

It is permissible to assume that the rate coefficient for collisions between ions and polar molecules does not depend on the moment of inertia of the latter because the rotation time is brief compared with the collision time. On taking the moment of inertia to be vanishingly small the classical collision problem can be solved exactly when the angular momentum vector is normal to the orbital plane. Use is made of the adiabatic invariance of ∮ p d q /2π in which p is an appropriate momentum and q is the conjugate coordinate. This adiabatic invariant fixes the change in the rotational energy in moving from an infinite separation to any chosen position. The average dipole orientation is thereby determined, which fixes the force acting. The potential energy function (including due allowance for the rotational energy stored) is now written down and an integral expression for the primitive rate coefficient is thence obtained. The ratio of the primitive rate coefficient to the Langevin rate coefficient depends only on the initial rotational energy and on the dimensionless parameter β = 2 αkT/D 2 , where α is the polarizability, D is the dipole moment and T is the temperature. Extensive computations have been performed. Tables are presented giving the primitive rate coefficient and also approximations to the thermally averaged rate coefficients for linear and for spherical top molecules.

2012 ◽  
Vol 21 (12) ◽  
pp. 1250101 ◽  
Author(s):  
I. M. AHMED ◽  
HEWA Y. ABDULLAH ◽  
S. T. AHMAD ◽  
I. HOSSAIN ◽  
M. K. KASMIN ◽  
...  

The properties of the yrast states for 100-110 Pd even–even (e–e) nuclei have been established. The relation between the moment of inertia 2ϑ/ℏ2 and the square of the rotational energy (ℏω)2 has been drawn to identify the back-bending that may occur at a certain state for each isotope. The relation between gamma-energy over spin Eγ/I as a function of spin I has been drawn to determine the evolution in each isotope ranging from vibration to rotational properties. The suitable limit in the interacting boson model IBM-1 has been used to calculate the yrast states for each isotope, which are then compared with the experimental results.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350055
Author(s):  
L. A. NAJIM ◽  
MALEK. H. KHEDER

A modified phenomenological model is used to calculate nuclear energy levels and describe successfully the backbending of the moment of inertia for the ground state bands in even–even isotopes of Hf and Dy nuclei. The model is a combination of the Myers and Swiatecki model with variable moment inertia (VMI) model. Since the Myers and Swiatecki model has a deviation from experimental energies in which it takes into account pairing effect with constant moment of inertia, in the rotation of nuclei, the Coriolis force acts to de-pair the nucleons pair and align their angular momentum with nuclei total angular momentum, thus Coriolis force increasing and decrease the rotational energy. So, the moment of inertia varies with the angular momentum. Therefore, we modified this model by adding a term to make the moment of inertia vary with angular momentum in the same manner of the VMI model which has a term added to the rotational energy equation. The modified model fits remarkably with the experimental observation and other models in many cases with the use of few parameters especially in rotational nuclei regions similar to Hf and Dy nuclei.


1989 ◽  
Vol 44 (1) ◽  
pp. 1-3
Author(s):  
R. Schuster ◽  
W. Stiller

Abstract The locked-dipole model for reactions between ions and polar molecules is modified by introducing the moment of inertia into the centrifugal term of the interaction potential. The resulting rate coefficients are compared with other models and experimental data.


Author(s):  
Yuan K. Ha

We reveal three new discoveries in black hole physics previously unexplored in the Hawking era. These results are based on the remarkable 1971 discovery of the irreducible mass of the black hole by Christodoulou and Ruffini, and subsequently confirmed by Hawking. (1) The Horizon Mass Theorem states that the mass at the event horizon of any black hole — neutral, charged, or rotating — is always twice its irreducible mass observed at infinity. (2) The External Energy Theorem asserts that the rotational energy of a Kerr black hole exists completely outside the horizon. This is due to the fact that the irreducible mass does not contain rotational energy. (3) The Moment of Inertia Theorem shows that every black hole has a moment of inertia. When the rotation stops, the irreducible mass of a Kerr black hole becomes the moment of inertia of a Schwarzschild black hole. This is recognized as the rotational equivalent of the rest mass of a moving body in relativity. Thus after 50 years, the irreducible mass has gained a new and profound significance. No longer is it a limiting value in rotation, it determines black hole dynamics and structure. What is believed to be a black hole is a mechanical body with an extended structure. Astrophysical black holes are likely to be massive compact objects from which light cannot escape.


1982 ◽  
Author(s):  
Carol Zahner ◽  
M. Stephen Kaminaka

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamad Akbar Ali ◽  
M. Balaganesh ◽  
Faisal A. Al-Odail ◽  
K. C. Lin

AbstractThe rate coefficients for OH + CH3OH and OH + CH3OH (+ X) (X = NH3, H2O) reactions were calculated using microcanonical, and canonical variational transition state theory (CVT) between 200 and 400 K based on potential energy surface constructed using CCSD(T)//M06-2X/6-311++G(3df,3pd). The results show that OH + CH3OH is dominated by the hydrogen atoms abstraction from CH3 position in both free and ammonia/water catalyzed ones. This result is in consistent with previous experimental and theoretical studies. The calculated rate coefficient for the OH + CH3OH (8.8 × 10−13 cm3 molecule−1 s−1), for OH + CH3OH (+ NH3) [1.9 × 10−21 cm3 molecule−1 s−1] and for OH + CH3OH (+ H2O) [8.1 × 10−16 cm3 molecule−1 s−1] at 300 K. The rate coefficient is at least 8 order magnitude [for OH + CH3OH(+ NH3) reaction] and 3 orders magnitude [OH + CH3OH (+ H2O)] are smaller than free OH + CH3OH reaction. Our calculations predict that the catalytic effect of single ammonia and water molecule on OH + CH3OH reaction has no effect under tropospheric conditions because the dominated ammonia and water-assisted reaction depends on ammonia and water concentration, respectively. As a result, the total effective reaction rate coefficients are smaller. The current study provides a comprehensive example of how basic and neutral catalysts effect the most important atmospheric prototype alcohol reactions.


Author(s):  
Chuanwen Zhang ◽  
Guangxu Zhou ◽  
Ting Yang ◽  
Ningran Song ◽  
Xinli Wang ◽  
...  

Author(s):  
Daniel C Morris ◽  
Stuart W Prescott ◽  
Jason B Harper

A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient...


1971 ◽  
Vol 34 (4) ◽  
pp. 255-256 ◽  
Author(s):  
S.A. Hjorth ◽  
J. Oppelstrup ◽  
G. Ehrling

Sign in / Sign up

Export Citation Format

Share Document