centrifugal term
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mohamed M'Hamed Ezzine ◽  
Mohammed Hachama ◽  
Ahmed Diaf

Abstract In this paper, we derive the `-states energy spectrum of the q-deformed hyperbolic Barrier Potential. Within the Feynman path integral formalism, we propose an appropriate approximation of the centrifugal term. Then, using Euler angles and the isomorphism between S3and SU(1, 1), we convert the radial path integral into a maniable one. The obtained eigenvalues are in very good agreement with the numerical results. In addition, we applied our results to some diatomic molecules and obtained accurate results compared to the experimental (RKR) values.


Author(s):  
D Nath ◽  
Amlan Roy

Energy spectrum as well as various information theoretic measures are considered for Hulthén potential in D dimension. For a given ℓ≠0 state, analytic expressions are derived, following a simple intuitive approximation for accurate representation of centrifugal term, within the conventional Nikiforov-Uvarov method. This is derived from a linear combination of two widely used Greene-Aldrich and Pekeris-type approximations. Energy, wave function, normalization constant, expectation value in r and p space, Heisenberg uncertainty relation, entropic moment of order α¯, Shannon entropy, Rényi entropy, disequilibrium, majorization as well as four selected complexity measures like LMC (López-Ruiz, Mancini, Calbert), shape Rényi complexity, Generalized Rényi complexity and Rényi complexity ratio are offered for different screening parameters (δ). The effective potential is described quite satisfactorily throughout the whole domain. Obtained results are compared with theoretical energies available in literature, which shows excellent agreement. Performance of six different approximations to centrifugal term is critically discussed. An approximate analytical expression for critical screening for a specific state in arbitrary dimension is offered. Additionally, some inter-dimensional degeneracy occurring in two states, at different dimension for a particular δ is also uncovered. PACS: 02.60.-x, 03.65.Ca, 03.65.Ge, 03.65.-w Keywords: Hulthén potential, Rényi complexity ratio, Statistical complexity, Majorization, Pekeris approximation, Greene-Aldrich approximation.


2021 ◽  
Vol 67 (5 Sep-Oct) ◽  
Author(s):  
Abdelmadjid Maireche

In this research work, within the framework of relativistic and nonrelativistic noncommutative quantum mechanics, the deformed Klein–Gordon and Schrödinger equations were solved with the modified equal vector scalar Manning-Rosen potential that has been of significance interest in recent years using Bopp's shift method and standard perturbation theory in the first-order in the noncommutativity parameters  in 3-dimensions noncommutative quantum mechanics. By employing the improved approximation of the centrifugal term, the relativistic and nonrelativistic bound state energies were obtained for some diatomic molecules such as (HCl, CH, LiH, CO, NO, O2, I2, N2, H2, and Ar2). The obtained energy eigenvalues appear as a function of the generalized Gamma function, the parameters of noncommutativity, and the parameters  of studied potential, in addition to the atomic quantum numbers . In both relativistic and nonrelativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of RQM and NRQM. A straightforward limit of our results to ordinary quantum mechanics shows that the present result is consistent with what is obtained in the literature. We have seen that the improved approximation of the centrifugal term is better than the other approximations in finding the approximate analytical solutions of the Klein-Gordon and Schrödinger equations for the modified Manning–Rosen potential in RNCQM and NRNCQM.


Author(s):  
Bhishma Karki ◽  
Saddam Husain Dhobi ◽  
Kishori Yadav ◽  
Narayan Gautam

2020 ◽  
Vol 98 (11) ◽  
pp. 683-689
Author(s):  
Ekwevugbe Omugbe

The low- and high-lying rovibrational energy levels of the Schrodinger equation with the molecular Tietz–Hua potential are obtained via the Wentzel–Kramers–Brilluoin (WKB) quantization approach. The Pekeris-type approximation scheme is applied to deal with the orbital centrifugal term of the effective potential function. The obtained energy spectra and the rotational–vibrational (rovibrational) coefficients for [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] diatomic molecules were compared with the ones obtained by other analytical methods and available experimental data in the literature. The results revealed that the accuracy of the energy spectra for the high-lying rovibrational quantum states may depend on the rotational-vibrational constants.


2020 ◽  
Vol 17 (12) ◽  
pp. 2050178
Author(s):  
K. Bakke ◽  
C. Furtado

We analyze the interaction of the induced electric dipole moment of a neutral particle with an electric field in elastic medium with a charged disclination from a semiclassical point of view. We show that the interaction of the induced electric dipole moment of a neutral particle with an electric field can yield an attractive inverse-square potential, where it is influenced by the topology of the disclination. Then, by using the Wentzel, Kramers and Brillouin approximation based on the Langer transformation, we show that the centrifugal term of the radial equation must be modified due to the influence of the topology of the disclination. Besides, we obtain the bound states solutions to the Schrödinger equation.


2020 ◽  
Vol 58 (10) ◽  
pp. 2197-2203
Author(s):  
Qian Dong ◽  
Guo-Hua Sun ◽  
Bing He ◽  
Shi-Hai Dong

Sign in / Sign up

Export Citation Format

Share Document