Perception of the moment of inertia of hand tools

1982 ◽  
Author(s):  
Carol Zahner ◽  
M. Stephen Kaminaka
1982 ◽  
Vol 26 (5) ◽  
pp. 423-423
Author(s):  
Carol Zahner ◽  
M. Stephen Kaminaka

Suppose I ask you to select one from five identically manufactured baseball bats. Apart from surface texture and color, the dimensions and mass of the bats are exactly the same. However, as you test out the bats with a few swings you would very likely arrive at a definite preference for one or the other of the five. The mass distribution within the wood of the bat changes its feel. In mathematical terms, this difference in feel is best described by the moment of inertia. This presentation demonstrates the relationship between the measured moment of inertia of a hand implement and the users perception of the stimulus. Simple mock tools, all with the same weight and size but varying moments of inertia were rated against a standard according to the amount of moment of inertia. A functional relationship between the perception and the magnitude of the stimulus has been established. Observers of this presentation will be able to familiarize themselves with sensations and numerical values of moment of inertia of various hand tools and experimental test pieces. The measurement of moment of inertia is complicated by the geometry of the tool, the weight distribution, and the point of hand grasp. The values are unfamiliar. The concept of what causes the sensation is not simple and, as others have pointed out, our vocabularies are usually inadequate to describe what causes the change in sensation that is felt with a change in moment of inertia.


Author(s):  
Chuanwen Zhang ◽  
Guangxu Zhou ◽  
Ting Yang ◽  
Ningran Song ◽  
Xinli Wang ◽  
...  

1971 ◽  
Vol 34 (4) ◽  
pp. 255-256 ◽  
Author(s):  
S.A. Hjorth ◽  
J. Oppelstrup ◽  
G. Ehrling

1993 ◽  
Vol 21 (4) ◽  
pp. 355-366 ◽  
Author(s):  
David L. Wallach

The moment of inertia of a plane lamina about any axis not in this plane can be easily calculated if the moments of inertia about two mutually perpendicular axes in the plane are known. Then one can conclude that the moments of inertia of regular polygons and polyhedra have symmetry about a line or point, respectively, about their centres of mass. Furthermore, the moment of inertia about the apex of a right pyramid with a regular polygon base is dependent only on the angle the axis makes with the altitude. From this last statement, the calculation of the centre of mass moments of inertia of polyhedra becomes very easy.


2012 ◽  
Vol 253-255 ◽  
pp. 2102-2106 ◽  
Author(s):  
Xu Juan Yang ◽  
Zong Hua Wu ◽  
Zhao Jun Li ◽  
Gan Wei Cai

A torsional vibration model of the slewing mechanism of a hydraulic excavator is developed to predict its free vibration characteristics with consideration of many fundamental factors, such as the mesh stiffness of gear pairs, the coupling relationship of a two stage planetary gear trains and the variety of moment of inertia of the input end caused by the motion of work equipment. The natural frequencies are solved using the corresponding eigenvalue problem. Taking the moment of inertia of the input end for example to illustrate the relationship between the natural frequencies of the slewing mechanism and its parameters, based on the simulation results, just the first order frequency varies significantly with the moment of inertia of the input end of the slewing mechanism.


Author(s):  
Tao Wang ◽  
Jikun Li ◽  
Yuwen Liu

The control of permanent magnet synchronous motor has become an important research, and many control methods have been developed because of its high efficiency and energy-saving characteristics. This article proposes a new motor control approach based on synergetic approach in control theory (SACT) and sliding-mode control (SMC). Since the load torque of the motor will change, the moment of inertia will increase in the experiment. The load torque is estimated by the sliding-mode observer. The moment of inertia is calculated by the least squares method by adding a forgetting factor. The practical application of synergetic control theory broadens the train of thought to meet the demand of high-performance motor drive further. The simulation and experimental results show that this control scheme in this article can improve the transient response and system robustness of dynamic systems.


2012 ◽  
Vol 490-495 ◽  
pp. 2156-2159
Author(s):  
Wu Gang Li

In order to find the principal axes of inertia and calculate their moment of inertia to any plane homogeneous rigid body for calculating easily the moment of inertia to any axis of this rigid body, the principal axes could be found and their moment of inertia could be calculated automatically by using the reading-image of MATLAB to read the image messages about the flat surface of the rigid body and by the procedures which ware made according to the logic relation about the principal axis and the moment of inertia of the rigid body. Applying this method in a homogeneous cube, a result was acquired, error of which is small compared with the theoretical value. So this method is reliable, convenient and practical


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 443
Author(s):  
Lorenzo Iorio

One of the post-Keplerian (PK) parameters determined in timing analyses of several binary pulsars is the fractional periastron advance per orbit kPK. Along with other PK parameters, it is used in testing general relativity once it is translated into the periastron precession ω˙PK. It was recently remarked that the periastron ω of PSR J0737–3039A/B may be used to measure/constrain the moment of inertia of A through the extraction of the general relativistic Lense–Thirring precession ω˙LT,A≃−0.00060∘yr−1 from the experimentally determined periastron rate ω˙obs provided that the other post-Newtonian (PN) contributions to ω˙exp can be accurately modeled. Among them, the 2PN seems to be of the same order of magnitude of ω˙LT,A. An analytical expression of the total 2PN periastron precession ω˙2PN in terms of the osculating Keplerian orbital elements, valid not only for binary pulsars, is provided, thereby elucidating the subtleties implied in correctly calculating it from k1PN+k2PN and correcting some past errors by the present author. The formula for ω˙2PN is demonstrated to be equivalent to that obtainable from k1PN+k2PN by Damour and Schäfer expressed in the Damour–Deruelle (DD) parameterization. ω˙2PN actually depends on the initial orbital phase, hidden in the DD picture, so that −0.00080∘yr−1≤ω˙2PN≤−0.00045∘yr−1. A recently released prediction of ω˙2PN for PSR J0737–3039A/B is discussed.


Sign in / Sign up

Export Citation Format

Share Document