Spectroscopic investigations of hydrogen bonding interactions in the gas phase. IX. Vibrational satellites in the rotational spectrum of the hydrogen-bonded homodimer HCN • • • HCN

The rotational spectrum of the hydrogen cyanide dimer has been observed in the frequency range 26-40 GHz by using a Stark-modulated microwave spectrometer. Although the spectrum is very weak, even under optimum conditions, it has been possible to assign vibrational satellites in the v β progression based on the ground state and in the v β progression based on v σ ═ 1 with the aid of the computer simulation of spectra and the ground-state spectroscopic constants. The spectroscopic constants now available for the hydrogen cyanide dimerare summarized as follows: (HC 14 N) 2 (DC 14 N) 2 (HC 15 N) 2 v β ═ 1 ← 0/cm -1 35±5 30±5 35±5 v σ ═ 1 ← 0/cm -1 101 ─ ─ B o /MHz 1745.80973(50) 1661.18(26) 1684.28825(25) D J /kHz 2.133(30) (1.873) 1.900(30) r c. m ./nm 44.496 ─ 44.499 K σ /(Nm -1 ) 8.14 ─ 8.51 α β /MHz ─20.07 (2) ─17.73 (27) ─18.74 (9) γ β /MHz 0.266 (4) 0.242 (36) 0.250 (17) q β /MHz 5.33 (4) 5.44 (13) 5.15 (10) α σ /MHz (31.44) ─ ─

The microwave rotational spectrum of the hydrogen-bonded heterodimer CH 3 CN • • • HF has been identified and shown to be characteristic of a symmetric top. A detailed analysis of several rotational transitions for a variety of isotopic species gives the spectroscopic constants summarized in the following table: Rotational constants/MHz, vibration-rotation constants/MHz and vibrational separations/cm -1 of CH 3 CN • • • HF


The hydrogen bonded dimer formed between cyanoacetylene and hydrogen fluoride has been identified through its infrared and microwave spectra. Two microwave techniques, continuous wave and pulsed-nozzle Fourier-transform spectroscopy, have been combined to identify unambiguously the vibrational ground state transitions and to assign vibrational satellites. In making the assignments, much use has been made of computer simu­lation of spectra, which is described in an Appendix. Analysis of the microwave spectra led to the following spectroscopic constants and molecular parameters. HC 3 N ∙ ∙ ∙HF HC 3 N∙ ∙ ∙DF B 0 /MHz 1220.68431 (9) 1204.9051 (2) D J /kHz 0.306 (2) 0.296 (3) α β /MHz ─7.20 (2) — γ β /MHz 0.094 (3) — γ 11 /MHz ─0.030 (2) — α σ /MHz ─13.7 (2) — q β /MHz 3.12 (2) — r 0 (N ∙ ∙ ∙ F)/nm 0.2788 0.2785 X /MHz ─ 3.876 ─ 3.854 v β /cm -1 30 — v σ /cm -1 139 — k σ /(N m -1 ) 16.3 — k s /(N m -1 ) 770 — Finally, the variation of ∆ v̄ as a function of r 0 (N ∙ ∙ ∙ F) has been examined for a series of dimers RCN ∙ ∙ ∙ HF.


Proc. R. Soc. Lond. A 401, 327-347 (1985) Spectroscopic investigations of hydrogen bonding interactions in the gas phase. X. Properties of the hydrogen-bonded heterodimer HCN⋯HF determined from hyperfine coupling and centrifugal distortion effects in its ground-state rotational spectrum By A. C. Legon, D. J. Millen and L. C. Willoughby On p. 327, at the end of the abstract, for 0.14 Å read 0.014 Å. On p. 343, line 7, for 0.025 Å read 0.014 Å. On p. 344, line 27, for 25.4° read 21.7°; line 33, for 6.6° read 2.9°. On p. 347, line 12, for 0.025 Å read 0.014 Å.


1990 ◽  
Vol 45 (8) ◽  
pp. 989-994 ◽  
Author(s):  
Kirsten Vormann ◽  
Helmut Dreizler ◽  
Hans Hübner ◽  
Wolfgang Hüttner

Abstract The methyl torsional fine structure in the rotational spectrum of gauche butane in the vibrational ground state was investigated in the frequency range between 10 and 141 GHz. Using the internal axis method (IAM) in the formulation of Woods, all internal rotation parameters were determined with high accuracy. The barrier height of the methyl internal rotation was determined to 11.34 (29) kJ/mol (2.710 (69) kcal/mol)


1997 ◽  
Vol 52 (3) ◽  
pp. 293-294
Author(s):  
V. Storm ◽  
D. Consalvo ◽  
H. Dreizler

Abstract We report on the measurement and assignment of the benzonitrile-water complex rotational spectrum in the vi-bronic ground state. This study was facilitated by a newly constructed low frequency molecular beam Fourier trans-form microwave spectrometer.


1989 ◽  
Vol 44 (1) ◽  
pp. 84-86 ◽  
Author(s):  
Kirsten Vormann ◽  
Helmut Dreizler

Abstract We present an investigation and interpretation of the 11B-quadrupole hyperfine structure (hfs) in the rotational spectrum of phenyldifluoroborane in the torsional ground state of the BF2 group. The measurements were made with a microwave Fourier transform (MWFT) spectrometer in the frequency range between 5 and 8 GHz.


1992 ◽  
Vol 47 (10) ◽  
pp. 1091-1093 ◽  
Author(s):  
M. Liedtke ◽  
A. H. Saleck ◽  
J. Behrend ◽  
G. Winnewisser ◽  
R. Klünsch ◽  
...  

AbstractThe rotational spectrum of HS3D in the vibrational ground state has been measured in the frequency range between 75 and 293 GHz. Up to now, about 180 Q-, 30 P-, and 70 R-branch c-type transitions have been identified. The preliminary rotational constants of the species observed support the cis-conformation established earlier from the H2S3 rotational spectrum.


2003 ◽  
Vol 68 (9) ◽  
pp. 1572-1578 ◽  
Author(s):  
B. Michela Giuliano ◽  
Walther Caminati

The rotational spectra of the ground state and of one vibrational satellite of 2,3-benzofuran have been measured by millimetre-wave absorption free jet spectroscopy in the frequency range 60-78 GHz. The value of the inertial defect (-0.072 uÅ2) shows the molecule to be planar. The shifts of the rotational constants in going from the ground to the excited state indicate that the observed vibrational satellite does not belong to the two lowest energy motions, the butterfly and 1,3-ring-twisting, which undergo relaxation upon the supersonic expansion.


2000 ◽  
Vol 55 (5) ◽  
pp. 486-490 ◽  
Author(s):  
Holger S. P. Müller ◽  
Ralf Gendriesch ◽  
Frank Lewen ◽  
Gisbert Winnewisser

Abstract The ground state rotational spectrum of H2C18O has been studied between 485 and 835 GHz with a sample of natural isotopic composition. Additional lines have been recorded around 130 GHz and near 1.85 THz, using a recently developed far-infrared laser-sideband spectrometer. The accurate new line frequencies were fit together with previously published data to obtain greatly improved spectroscopic constants. Both Watson's S and A reduced Hamiltonians have been employed yielding the rotational constants AA = 281 961.215 (82), BA = 36 902.275 51 (36), CA = 32 513.405 89 (36), AA = 281 961.371 (82), BA = 36 904.173 32 (91), and CA = 32 511.524 65 (86) MHz, respectively.


Sign in / Sign up

Export Citation Format

Share Document