Local three-spin correlations in the free-fermion and planar Ising models

A number of local three-spin correlations are calculated exactly for various related ferromagnetic two-dimensional solvable models in statistical mechanics.They are the square lattice free-fermion model, the equivalent checkerboard Ising model, and the anisotropic triangular, honeycomb and square lattice Ising models. The different results are all applications of a single unifying formula.

2000 ◽  
Vol 15 (01) ◽  
pp. 105-131
Author(s):  
H. E. BOOS

The model which is the generalization of the one-dimensional XY-spin chain for the case of the two-dimensional square lattice is considered. The subspace of the "string" states is studied. The solution to the eigenvalue problem is obtained for the single "string" in cases of the "string" with fixed ends and "string" of types (1, 1) and (1, 2) living on the torus. The latter case has the features of a self-interacting system and does not seem to be integrable while the previous two cases are equivalent to the free-fermion model.


It is shown that the two-dimensional free fermion model is equivalent to a checkerboard Ising model, which is a special case of the general ‘ Z -invariant’ Ising model. Expressions are given for the partition function and local correlations in terms of those of the regular square lattice Ising model. Corresponding results are given for the self-dual Potts model, and the application of the methods to the three-dimensional Zamolodchikov model is discussed. The paper ends with a discussion of the critical and disorder surfaces of the checkerboard Potts model.


2002 ◽  
Vol 16 (32) ◽  
pp. 4919-4922
Author(s):  
KEH YING LIN ◽  
MALL CHEN

We have calculated the high-temperature series expansion of the zero-field susceptibility of the square-lattice Ising model with first and second neighbour interactions to the 20th order by computer. Our results extend the previous calculation by Hsiao and Lin to two more orders. We use the Padé approximants to estimate the critical exponent γ and the critical temperature. Our result 1.747 < γ < 1.753 supports the universality conjecture that all two-dimensional Ising models have the same critical exponent γ = 1.75.


Sign in / Sign up

Export Citation Format

Share Document