scholarly journals A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change

Author(s):  
G. R. Bigg ◽  
H. L. Wei ◽  
D. J. Wilton ◽  
Y. Zhao ◽  
S. A. Billings ◽  
...  

Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean–iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1–3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources.

2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


2012 ◽  
Vol 6 (2) ◽  
pp. 255-272 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.


2012 ◽  
Vol 6 (6) ◽  
pp. 1275-1294 ◽  
Author(s):  
J. G. L. Rae ◽  
G. Aðalgeirsdóttir ◽  
T. L. Edwards ◽  
X. Fettweis ◽  
J. M. Gregory ◽  
...  

Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.


2013 ◽  
Vol 7 (2) ◽  
pp. 469-489 ◽  
Author(s):  
X. Fettweis ◽  
B. Franco ◽  
M. Tedesco ◽  
J. H. van Angelen ◽  
J. T. M. Lenaerts ◽  
...  

Abstract. To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.


2012 ◽  
Vol 6 (3) ◽  
pp. 695-711 ◽  
Author(s):  
B. Franco ◽  
X. Fettweis ◽  
C. Lang ◽  
M. Erpicum

Abstract. With the aim to force an ice dynamical model, the Greenland ice sheet (GrIS) surface mass balance (SMB) was modelled at different spatial resolutions (15–50 km) for the period 1990–2010, using the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-INTERIM reanalysis. This comparison revealed that (i) the inter-annual variability of the SMB components is consistent within the different spatial resolutions investigated, (ii) the MAR model simulates heavier precipitation on average over the GrIS with decreasing spatial resolution, and (iii) the SMB components (except precipitation) can be derived from a simulation at lower resolution with an "intelligent" interpolation. This interpolation can also be used to approximate the SMB components over another topography/ice sheet mask of the GrIS. These results are important for the forcing of an ice dynamical model needed to enable future projections of the GrIS contribution to sea level rise over the coming centuries.


2016 ◽  
Author(s):  
Xavier Fettweis ◽  
Jason E. Box ◽  
Cécile Agosta ◽  
Charles Amory ◽  
Christoph Kittel ◽  
...  

Abstract. With the aim of studying the recent Greenland Ice Sheet (GrIS) Surface Mass Balance (SMB) decrease with respect to the last century, we have forced the regional climate MAR model (version 3.5.2) with the ERA-Interim (1979–2015), ERA-40 (1958–2001), NCEP-NCARv1 (1948–2015), NCEP-NCARv2 (1979–2015), JRA-55 (1958–2014), 20CRv2(c) (1900–2014) and ERA-20C (1900–2010) reanalysis. While all of these forcing products are reanalyses assumed to represent the same climate, they produce significant differences in the MAR simulated SMB over their common period. A temperature adjustment of +1 °C (respectively −1 °C) improved the accuracy of MAR boundary conditions from both ERA-20C and 20CRv2 reanalyses given that ERA-20C (resp. 20CRv2) is 1 °C colder (resp. warmer) over Greenland than ERA-Interim over 1980–2010. Comparisons with daily PROMICE near-surface observations validated these adjustments. Comparisons with SMB measurements from PROMICE, ice cores and satellite derived melt extent reveal the most accurate forcing data sets for simulating the GrIS SMB to be ERA-Interim and NCEP-NCARv1. However, some biases remain in MAR suggesting that some improvements need still to be done in its cloudiness and radiative scheme as well as in the representation of the bare ice albedo. Results from all forcing simulations indicate: (i) the period 1961–1990 commonly chosen as a stable reference period for Greenland SMB and ice dynamics is actually a period when the SMB was anomalously positive (~ +10 %) compared to the last 120 years; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120 year common period; (iii) before 1960, both ERA-20C and 20CRv2 forced MAR simulations suggest a significant precipitation increase over 1900–1950 although this increase could be the result of an artefact in reanalysis not enough constrained by observations during this period. These MAR-based SMB and accumulation reconstructions are however quite similar to those from Box (2013) after 1930, which confirms the Box (2013)'s stationarity assumption of SMB over the last century. Finally, the ERA-20C forced simulation only suggests that SMB during the 1920–1930 warm period over Greenland was comparable to the SMB of the 2000's due to both higher melt and lower precipitation than normal.


2016 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a dataset of daily, 1-km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Using elevation dependence, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11-km. The dataset includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1-km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11-km product, the more detailed representation of confined glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled dataset of ablation measurements.


2014 ◽  
Vol 8 (1) ◽  
pp. 181-194 ◽  
Author(s):  
T. L. Edwards ◽  
X. Fettweis ◽  
O. Gagliardini ◽  
F. Gillet-Chaulet ◽  
H. Goelzer ◽  
...  

Abstract. We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m−3 a−1 for the north, and 1.91 (1.03 to 2.61) kg m−3 a−1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m−3 a−1 in the north, and 0.07 (−0.07 to 0.59) kg m−3 a−1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014).


2019 ◽  
Vol 13 (12) ◽  
pp. 3193-3208 ◽  
Author(s):  
Raymond Sellevold ◽  
Leonardus van Kampenhout ◽  
Jan T. M. Lenaerts ◽  
Brice Noël ◽  
William H. Lipscomb ◽  
...  

Abstract. The modeling of ice sheets in Earth system models (ESMs) is an active area of research with applications to future sea level rise projections and paleoclimate studies. A major challenge for surface mass balance (SMB) modeling with ESMs arises from their coarse resolution. This paper evaluates the elevation class (EC) method as an SMB downscaling alternative to the dynamical downscaling of regional climate models. To this end, we compare EC-simulated elevation-dependent surface energy and mass balance gradients from the Community Earth System Model 1.0 (CESM1.0) with those from the regional climate model RACMO2.3. The EC implementation in CESM1.0 combines prognostic snow albedo, a multilayer snow model, and elevation corrections for two atmospheric forcing variables: temperature and humidity. Despite making no corrections for incoming radiation and precipitation, we find that the EC method in CESM1.0 yields similar SMB gradients to RACMO2.3, in part due to compensating biases in snowfall, surface melt, and refreezing gradients. We discuss the sensitivity of the results to the lapse rate used for the temperature correction. We also evaluate the impact of the EC method on the climate simulated by the ESM and find minor cooling over the Greenland ice sheet and Barents and Greenland seas, which compensates for a warm bias in the ESM due to topographic smoothing. Based on our diagnostic procedure to evaluate the EC method, we make several recommendations for future implementations.


Sign in / Sign up

Export Citation Format

Share Document