scholarly journals Numerical study of fractional nonlinear Schrödinger equations

Author(s):  
Christian Klein ◽  
Christof Sparber ◽  
Peter Markowich

Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

2000 ◽  
Vol 414 ◽  
pp. 339-366 ◽  
Author(s):  
GARY J. SHARPE ◽  
S. A. E. G. FALLE

In this paper we perform high-resolution one-dimensional time-dependent numerical simulations of detonations for which the underlying steady planar waves are of the pathological type. Pathological detonations are possible when there are endothermic or dissipative effects in the system. We consider a system with two consecutive irreversible reactions A→B→C, with an Arrhenius form of the reaction rates and the second reaction endothermic. The self-sustaining steady planar detonation then travels at the minimum speed, which is faster than the Chapman–Jouguet speed, and has an internal frozen sonic point at which the thermicity vanishes. The flow downstream of this sonic point is supersonic if the detonation is unsupported or subsonic if the detonation is supported, the two cases having very different detonation wave structures. We compare and contrast the long-time nonlinear behaviour of the unsupported and supported pathological detonations. We show that the stability of the supported and unsupported steady waves can be quite different, even near the stability boundary. Indeed, the unsupported detonation can easily fail while the supported wave propagates as a pulsating detonation. We also consider overdriven detonations for the system. We show that, in agreement with a linear stability analysis, the stability of the steady wave is very sensitive to the degree of overdrive near the pathological detonation speed, and that increasing the overdrive can destabilize the wave, in contrast to systems where the self-sustaining wave is the Chapman–Jouguet detonation.


Author(s):  
A. Kalogirou ◽  
E. E. Keaveny ◽  
D. T. Papageorgiou

The Kuramoto–Sivashinsky equation in one spatial dimension (1D KSE) is one of the most well-known and well-studied partial differential equations. It exhibits spatio-temporal chaos that emerges through various bifurcations as the domain length increases. There have been several notable analytical studies aimed at understanding how this property extends to the case of two spatial dimensions. In this study, we perform an extensive numerical study of the Kuramoto–Sivashinsky equation (2D KSE) to complement this analytical work. We explore in detail the statistics of chaotic solutions and classify the solutions that arise for domain sizes where the trivial solution is unstable and the long-time dynamics are completely two-dimensional. While we find that many of the features of the 1D KSE, including how the energy scales with system size, carry over to the 2D case, we also note several differences including the various paths to chaos that are not through period doubling.


2013 ◽  
Vol 63 (6) ◽  
pp. 2137-2198 ◽  
Author(s):  
Nicolas Burq ◽  
Laurent Thomann ◽  
Nikolay Tzvetkov

Sign in / Sign up

Export Citation Format

Share Document