scholarly journals Riemann–Hilbert problem on a hyperelliptic surface and uniformly stressed inclusions embedded into a half-plane subjected to antiplane strain

Author(s):  
Y. A. Antipov

An inverse problem of the elasticity of n elastic inclusions embedded into an elastic half-plane is analysed. The boundary of the half-plane is free of traction. The half-plane and the inclusions are subjected to antiplane shear, and the conditions of ideal contact hold in the interfaces between the inclusions and the half-plane. The shapes of the inclusions are not prescribed and have to be determined by enforcing uniform stresses inside the inclusions. The method of conformal mappings from a slit domain onto the ( n + 1 ) -connected physical domain is worked out. It is shown that to recover the map and the shapes of the inclusions, one needs to solve a vector Riemann–Hilbert problem on a genus- n hyperelliptic surface. In a particular case of loading, the vector problem reduces to two scalar Riemann–Hilbert problems on n + 1 slits on a hyperelliptic surface. In the elliptic case, in addition to three parameters of the model, the conformal map possesses a free geometric parameter. The results of numerical tests in the elliptic case show the impact of these parameters on the inclusion shape.

Author(s):  
Stefan Hollands

AbstractWe introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin–Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.


2015 ◽  
Vol 336 (1) ◽  
pp. 337-380 ◽  
Author(s):  
Martin A. Guest ◽  
Alexander R. Its ◽  
Chang-Shou Lin

2002 ◽  
Vol 16 (30) ◽  
pp. 4593-4605 ◽  
Author(s):  
G. GIORGADZE

In this work, a gauge approach to quantum computing is considered. It is assumed that there exists a classical procedure for placing certain classical system in a state described by a holomorphic vector bundle with connection with logarithmic singularities. This bundle and its connection are constructed with the aid of unitary operators realizing the given algorithm using methods of the monodromic Riemann–Hilbert problem. Universality is understood in the sense that for any collection of unitary matrices there exists a connection with logarithmic singularities whose monodromy representation involves these matrices.


Sign in / Sign up

Export Citation Format

Share Document