scholarly journals A growth model for water distribution networks with loops

Author(s):  
Kashin Sugishita ◽  
Noha Abdel-Mottaleb ◽  
Qiong Zhang ◽  
Naoki Masuda

Water distribution networks (WDNs) expand their service areas over time. These growth dynamics are poorly understood. One facet of WDNs is that they have loops in general, and closing loops may be a functionally important process for enhancing their robustness and efficiency. We propose a growth model for WDNs that generates networks with loops and is applicable to networks with multiple water sources. We apply the proposed model to four empirical WDNs to show that it produces networks whose structure is similar to that of the empirical WDNs. The comparison between the empirical and modelled WDNs suggests that the empirical WDNs may realize a reasonable balance between cost, efficiency and robustness in terms of the network structure. We also study the design of pipe diameters based on a biological positive feedback mechanism. Specifically, we apply a model inspired by Physarum polycephalum to find moderate positive correlations between the empirical and modelled pipe diameters. The difference between the empirical and modelled pipe diameters suggests that we may be able to improve the performance of WDNs by following organizing principles of biological flow networks.

2020 ◽  
Vol 53 (2) ◽  
pp. 16697-16702
Author(s):  
I. Santos-Ruiz ◽  
J. Blesa ◽  
V. Puig ◽  
F.R. López-Estrada

2020 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Enrico Creaco ◽  
Giacomo Galuppini ◽  
Alberto Campisano ◽  
Marco Franchini

This paper presents a two-step methodology for the stochastic generation of snapshot peak demand scenarios in water distribution networks (WDNs), each of which is based on a single combination of demand values at WDN nodes. The methodology describes the hourly demand at both nodal and WDN scales through a beta probabilistic model, which is flexible enough to suit both small and large demand aggregations in terms of mean, standard deviation, and skewness. The first step of the methodology enables generating separately the peak demand samples at WDN nodes. Then, in the second step, the nodal demand samples are consistently reordered to build snapshot demand scenarios for the WDN, while respecting the rank cross-correlations at lag 0. The applications concerned the one-year long dataset of about 1000 user demand values from the district of Soccavo, Naples (Italy). Best-fit scaling equations were constructed to express the main statistics of peak demand as a function of the average demand value on a long-time horizon, i.e., one year. The results of applications to four case studies proved the methodology effective and robust for various numbers and sizes of users.


2020 ◽  
Vol 53 (2) ◽  
pp. 16691-16696
Author(s):  
Luis Romero ◽  
Joaquim Blesa ◽  
Vicenç Puig ◽  
Gabriela Cembrano ◽  
Carlos Trapiello

Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.


Sign in / Sign up

Export Citation Format

Share Document