The relation of elevation of cytosolic free calcium to activation of membrane conductance in rat parotid acinar cells

1989 ◽  
Vol 237 (1286) ◽  
pp. 99-107 ◽  

The relation between elevation of cytosolic free calcium and activation of membrane conductance has been studied in single acinar cells of the rat parotid. Outward and inward currents are activated by calcium elevation and oscillate in phase with oscillations of cytosolic calcium. The outward current results from activation of a large unit-conductance Ca 2+ and voltage-dependent K + channel, whereas the inward current is most likely carried predominantly by Cl - . Both these conductances have been previously described in exocrine cells. Buffering calcium at resting levels eliminated current responses to muscarinic agonists, suggesting that calcium is the only significant second messenger involved in the short-term control of this conductance by acetylcholine.

1995 ◽  
Vol 74 (4) ◽  
pp. 1485-1497 ◽  
Author(s):  
J. Schmidt ◽  
S. Gramoll ◽  
R. L. Calabrese

1. The effects of Phe-Met-Arg-Phe (FMRF)amide (10(-6) M) on membrane properties of heart interneurons in the third, fourth, and fifth segmental ganglia [HN(3), HN(4), and HN(5) cells, respectively] of the leech were studied using discontinuous current-clamp and single-electrode voltage-clamp techniques. FMRFamide was focally applied onto the soma of the cell under investigation. 2. Application of FMRFamide depolarized HN(3) and HN(4) cells by evoking an inward current. These responses were subject to pronounced desensitization. The inward currents evoked by application of FMRFamide were associated with an increase in membrane conductance and appeared to be voltage dependent. Currents were enhanced at more depolarized potentials. 3. The responsiveness of the HN(3) and HN(4) cells was not affected when the Ca2+ concentration in the bath saline was reduced from normal (1.8 mM) to 0.1 mM. The depolarizing response on application of FMRFamide was blocked when Co2+ was substituted for Ca2+. 4. HN(3) and HN(4) cells did not respond to FMRFamide application in Na(+)-free solution. Inward currents were largely reduced when bath saline with 30% of the normal Na+ concentration was used. When Li+ was substituted for Na+ in the saline, application of FMRFamide still evoked depolarizing responses in HN(3) and HN(4) cells. 5. We conclude that focal application of FMRFamide onto the somata of HN(3) and HN(4) cells evokes a voltage-dependent inward current, carried largely by Na+. 6. Focal application of FMRFamide onto somata of HN(5) cells hyperpolarized these cells by activating a voltage-dependent outward current. 7. HN(5) cells were loaded with Cl- until inhibitory postsynaptic potentials carried by Cl- reversed. Cl(-)-loaded cells still responded with a hyperpolarization when FMRFamide was applied onto their somata. Therefore the outward current evoked by FMRFamide appears to be mediated by a K+ conductance increase. 8. Application of FMRFamide onto the somata of HN(5) cells enhanced outward currents that were evoked by depolarizing voltage steps from a holding potential of -45 mV. 9. We conclude that the hyperpolarizing response of HN(5) cells to focal application of FMRFamide onto their somata is the result of an up-regulation of a voltage-dependent K+ current.


1997 ◽  
Vol 272 (6) ◽  
pp. G1489-G1498 ◽  
Author(s):  
H. Klonowski-Stumpe ◽  
R. Schreiber ◽  
M. Grolik ◽  
H. U. Schulz ◽  
D. Haussinger ◽  
...  

The present study evaluates the effect of free radicals generated by xanthine oxidase-catalyzed oxidation of hypoxanthine on cellular function of isolated rat pancreatic acinar cells. The results show that a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+]i) preceded all other morphological and functional alterations investigated. Radical-induced [Ca2+]i increase was largely inhibited by 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, which prevents Ca2+ release from intracellular stores, but not by Ca2(+)-depleted medium. Radicals released Ca2+ from thapsigargin-insensitive, ryanodine-sensitive intracellular stores, whereas the secretagogue caerulein at physiological concentrations mainly released Ca2+ from thapsigargin-sensitive stores. In contrast to effects of the secretagogue, radical-induced Ca2+ changes did not cause luminal protein secretion but cell death. In single-cell measurements, both secretagogue and radicals induced oscillations of [Ca2+]i. Radical-induced oscillations had a lower frequency but similar amplitude when compared with caerulein-induced oscillations. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and ryanodine, which prevented the radical-induced Ca2+ increase without altering the generation of radicals, markedly reduced the radical-induced cell damage. These results suggest that the Ca2+ increase mediates the radical-induced cell injury. The studies also indicate that not only the extent and duration but also the origin of [Ca2+]i release as well as the frequency of Ca2+ oscillations may determine whether a pancreatic acinar cell will secrete or die.


1988 ◽  
Vol 255 (3) ◽  
pp. E338-E346 ◽  
Author(s):  
R. E. Kramer

Studies were conducted to examine the effects of angiotensin II on cytosolic free calcium concentration in bovine adrenal glomerulosa cells maintained in primary culture. The calcium indicator, fura-2, and discontinuous dual-wavelength fluorescence spectroscopy were used to measure cytosolic free calcium in superfused adherent cell monolayers. Basal cytosolic free calcium concentration was 63.7 +/- 3.3 nM. The threshold concentration for angiotensin II-stimulated increases in cytosolic calcium was 10(-14)-10(-13) M, and maximal elevation of cytosolic calcium was produced by 10(-9) M angiotensin II. Angiotensin II (10(-13) M) produced a gradual increase in cytosolic calcium concentration that plateaued after 3-5 min of superfusion at a level approximately 1.2 times that of control cells. The calcium signal invoked by a maximal concentration (10(-9) M) of angiotensin II, in contrast, was characterized by an immediate, intense (approximately 8-fold) increase in cytosolic calcium concentration that decayed within 5 min to a lower, but sustained, level 2.5-3 times that of control cells. The calcium signals invoked by intermediate concentrations (10(-12)-10(-10) M) of angiotensin II exhibited dose-dependent increases in magnitude and a gradual transition in nature between those invoked by threshold and maximal concentrations of the peptide. The effect of angiotensin II to increase cytosolic calcium concentration was accompanied by an increase in aldosterone output. The increase in steroidogenesis was most closely correlated with the magnitude of the initial calcium signal. At high concentrations (10(-10) and 10(-9) M) of angiotensin II, there was a clear dissociation between aldosterone output and the magnitude of the sustained calcium signal.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Helmut Schiffl ◽  
Susanne M. Lang

Primary hyperparathyroidism (PHPT) may be associated with arterial hypertension. The underlying mechanisms are not fully understood and reversibility by parathyroid surgery is controversial. This study aimed to characterize pressor hormones, vascular reactivity to norepinephrine, and cytosolic-free calcium in platelets in 15 hypertensive patients with hypercalcaemic PHPT before and after successful parathyroidectomy and to compare them with 5 pre-hypertensive patients with normocalcaemic PHPT, 8 normotensive patients with hypercalcaemic PHPT and 15 normal controls. Hypertensive patients with hypercalcaemic PHPT had slightly higher levels of pressor hormones (), enhanced cardiovascular reactivity to norepinephrine () and increased cytosolic calcium in platelets () than controls. Pre-hypertensive patients with normocalcaemic PHPT had intermediate values of increased cardiovascular reactivity and cytosolic calcium. Normotensive patients with hypercalcaemic PHPT and normotensive controls had comparable pressor hormone concentrations and intracellular calcium levels. Successful parathyroidectomy was associated with normal blood pressure values and normalisation of pressor hormone concentrations, cardiovascular pressor reactivity and cytosolic free calcium. Our results suggest that parathyroid hypertension is mediated/maintained, at least in part, by functional alterations of vascular smooth muscle cells and can be cured by parathyroidectomy in those patients who do not have primary hypertension.


1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


2000 ◽  
Vol 150 (6) ◽  
pp. 1489-1498 ◽  
Author(s):  
Hui-Jun Wang ◽  
Ginette Guay ◽  
Liviu Pogan ◽  
Remy Sauvé ◽  
Ivan R. Nabi

Association between the ER and mitochondria has long been observed, and the formation of close contacts between ER and mitochondria is necessary for the ER-mediated sequestration of cytosolic calcium by mitochondria. Autocrine motility factor receptor (AMF-R) is a marker for a smooth subdomain of the ER, shown here by confocal microscopy to be distinct from, yet closely associated with the calnexin- or calreticulin-labeled ER. By EM, smooth ER AMF-R tubules exhibit direct interactions with mitochondria, identifying them as a mitochondria-associated smooth ER subdomain. In digitonin-permeabilized MDCK cells, the addition of rat liver cytosol stimulates the dissociation of smooth ER and mitochondria under conditions of low calcium. Using BAPTA chelators of various affinities and CaEGTA buffers of defined free Ca2+ concentrations and quantitative confocal microscopy, we show that free calcium concentrations <100 nM favor dissociation, whereas those >1 μM favor close association between these two organelles. Therefore, we describe a cellular mechanism that facilitates the close association of this smooth ER subdomain and mitochondria when cytosolic free calcium rises above physiological levels.


1994 ◽  
Vol 104 (6) ◽  
pp. 1039-1055 ◽  
Author(s):  
R P Malchow ◽  
H Qian ◽  
H Ripps

The cinchona alkaloids quinine and quinidine have been shown to block a broad range of voltage-gated membrane conductances in a variety of excitable tissues. Using the whole-cell version of the patch clamp technique, we examined the effects of these compounds on voltage-dependent currents from horizontal cells dissociated enzymatically from the all-rod retina of the skate. We report here a novel and unexpected action of quinine and quinidine on isolated horizontal cells. In addition to blocking several of the voltage-activated currents of these cells, the introduction of the alkaloids evoked a large outward current when the cells were held at depolarized potentials. Using tail current analysis, the reversal potential of the outward current was close to O mV, and the current was markedly suppressed by extracellularly applied cobalt, acetate, and halothane. Depolarization in the presence of quinine also permitted entry into the cells of extracellularly applied Lucifer yellow (MW = 443 D), whereas a 3-kD fluorescein-dextran complex was excluded. These findings suggest that the large, apparently nonselective conductance induced by quinine and quinidine results from the opening of hemi-gap junctional channels.


Sign in / Sign up

Export Citation Format

Share Document