Segment-specific effects of FMRFamide on membrane properties of heart interneurons in the leech

1995 ◽  
Vol 74 (4) ◽  
pp. 1485-1497 ◽  
Author(s):  
J. Schmidt ◽  
S. Gramoll ◽  
R. L. Calabrese

1. The effects of Phe-Met-Arg-Phe (FMRF)amide (10(-6) M) on membrane properties of heart interneurons in the third, fourth, and fifth segmental ganglia [HN(3), HN(4), and HN(5) cells, respectively] of the leech were studied using discontinuous current-clamp and single-electrode voltage-clamp techniques. FMRFamide was focally applied onto the soma of the cell under investigation. 2. Application of FMRFamide depolarized HN(3) and HN(4) cells by evoking an inward current. These responses were subject to pronounced desensitization. The inward currents evoked by application of FMRFamide were associated with an increase in membrane conductance and appeared to be voltage dependent. Currents were enhanced at more depolarized potentials. 3. The responsiveness of the HN(3) and HN(4) cells was not affected when the Ca2+ concentration in the bath saline was reduced from normal (1.8 mM) to 0.1 mM. The depolarizing response on application of FMRFamide was blocked when Co2+ was substituted for Ca2+. 4. HN(3) and HN(4) cells did not respond to FMRFamide application in Na(+)-free solution. Inward currents were largely reduced when bath saline with 30% of the normal Na+ concentration was used. When Li+ was substituted for Na+ in the saline, application of FMRFamide still evoked depolarizing responses in HN(3) and HN(4) cells. 5. We conclude that focal application of FMRFamide onto the somata of HN(3) and HN(4) cells evokes a voltage-dependent inward current, carried largely by Na+. 6. Focal application of FMRFamide onto somata of HN(5) cells hyperpolarized these cells by activating a voltage-dependent outward current. 7. HN(5) cells were loaded with Cl- until inhibitory postsynaptic potentials carried by Cl- reversed. Cl(-)-loaded cells still responded with a hyperpolarization when FMRFamide was applied onto their somata. Therefore the outward current evoked by FMRFamide appears to be mediated by a K+ conductance increase. 8. Application of FMRFamide onto the somata of HN(5) cells enhanced outward currents that were evoked by depolarizing voltage steps from a holding potential of -45 mV. 9. We conclude that the hyperpolarizing response of HN(5) cells to focal application of FMRFamide onto their somata is the result of an up-regulation of a voltage-dependent K+ current.

1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


1997 ◽  
Vol 78 (6) ◽  
pp. 3125-3132 ◽  
Author(s):  
Abdesslam Chrachri ◽  
Roddy Williamson

Chrachri, Abdesslam and Roddy Williamson. Voltage-dependent conductances in primary sensory hair cells. J. Neurophysiol. 78: 3125–3132, 1997. Cephalopods, such as sepia, squid, and octopus, show a well-developed and sophisticated control of balance particularly during prey capture and escape behaviors. There are two separate areas of sensory epithelium in cephalopod statocysts, a macula/statolith system, which detects linear accelerations (gravity), and a crista/cupula system, which detects rotational movements. The aim of this study is to characterize the ionic conductances in the basolateral membrane of primary sensory hair cells. These were studied using a whole cell patch-clamp technique, which allowed us to identify five ionic conductances in the isolated primary hair cells; an inward sodium current, an inward calcium current, and three potassium outward currents. These outward currents were distinguishable on the basis of their voltage-dependence and pharmacological sensitivities. First, a transient outward current ( I A) was elicited by depolarizing voltage steps from a holding potential of −60 mV, was inactivated by holding the cell at −40 mV, and was blocked by 4-aminopyridine. A second, voltage-sensitive, outward current with a sustained time course was identified. This current was not blocked by 4-aminopyridine nor inactivated at a holding potential of −40 mV and hence could be separated from I A using these protocols. A third outward current that depended on Ca2+ entry for its activation was detected, this current was identified by its sensitivity to Ca2+ channel blockers such as Co2+ and Cd2+ and by the N-shaped profile of its current-voltage curve. Inward currents were studied using cesium aspartate solution in the pipette to block the outward currents. Two inward currents were observed in the primary sensory hair cells. A fast transient inward current, which is presumably responsible for spike generation. This inward current appeared as a rapidly activating inward current; this was strongly voltage dependent. Three lines of evidence suggest that this fast transient inward current is a Na+ current ( I Na). First, it was blocked by tetrodotoxin (TTX); second, it also was blocked by Na+-free saline; and third, it was inactivated when primary hair cells were held at a potential more than −40 mV. The sustained inward current was not affected by TTX and was increased in amplitude 5 min after equimolar Ba2+ replaced Ca2+ as a charge carrier. This inward current also was blocked after external application of 2 mmol/l Co2+ or Cd2+. Furthermore, this current was reduced significantly in a dose-dependent manner by nifedipine, suggesting that it is an L-type Ca2+ current ( I Ca).


1980 ◽  
Vol 88 (1) ◽  
pp. 293-304 ◽  
Author(s):  
YOUKO SATOW ◽  
CHING KUNG

Late K-outward currents upon membrane depolarization were recorded in Paramecium tetraurelia under a voltage clamp. A Ca-induced K-outward component is demonstrated by subtracting the value of the outward current in a pawn A mutant lacking functional Ca-channels (pwA500). The Ca-induced K-outward current activates slowly, reaching a peak after 100 to 1000 ms. The current then remains steady or reaches the steady state after a decline of several seconds. EGTA2- injection experiments show that the Ca-induced K-outward current is dependent on the internal Ca2+ concentration. The current is shown to depend on the voltage-dependent Ca conductance, by study of the leaky pawn A mutant (pwA132), which has a lowered Ca conductance as well as a lowered Ca-induced K-current. The Ca-induced GK is thus indirectly dependent on the voltage. The maximal GK is about 40 nmho/cell at + 7 mV in 4 mM-K+. The Ca-induced K current is sustained throughout the prolonged depolarization and the prolonged ciliary reversal.


2020 ◽  
Vol 21 (14) ◽  
pp. 4876
Author(s):  
Zbigniew Burdach ◽  
Agnieszka Siemieniuk ◽  
Waldemar Karcz

In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.


1989 ◽  
Vol 257 (3) ◽  
pp. C461-C469 ◽  
Author(s):  
W. C. Cole ◽  
K. M. Sanders

Outward currents of colonic smooth muscle cells were characterized by the whole cell voltage-clamp method. Four components of outward current were identified: a time-independent and three time-dependent components. The time-dependent current showed strong outward rectification positive to -25 mV and was blocked by tetraethylammonium. The time-dependent components were separated on the basis of their time courses, voltage dependence, and pharmacological sensitivities. They are as follows. 1) A Ca2+-activated K current sensitive to external Ca2+ and Ca2+ influx was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (0.1 X 10(-3) M) and nifedipine (1 X 10(-6) and was increased by elevated Ca2+ (8 X 10(-6) M) and BAY K 8644 (1 X 10(-6) M). 2) A "delayed rectifier" current was observed that decayed slowly with time and showed no voltage-dependent inactivation. 3) Spontaneous transient outward currents that were blocked by ryanodine (2 X 10(-6) M) were also recorded. The possible contributions of these currents to the electrical activity of colonic muscle cells in situ are discussed. Ca2+-activated K current may contribute a significant conductance to the repolarizing phase of electrical slow waves.


1992 ◽  
Vol 99 (4) ◽  
pp. 505-529 ◽  
Author(s):  
T Miyamoto ◽  
D Restrepo ◽  
J H Teeter

The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 69 (1) ◽  
pp. 241-247 ◽  
Author(s):  
W. Muller ◽  
H. D. Lux

1. Numerical methods were used to evaluate voltage space-clamp performance in the investigation of a voltage-dependent inward current similar to the noninactivating Ca current. In addition, the cell is equipped with a repolarizing system, represented by leak and outwardly rectifying outward conductances. The electrotonically compact model cell is represented by a cable with an electrotonic length of 1 space constant under control conditions, but that becomes effectively only 0.33 space constants during a 90% reduction of the leak and outward conductance. The cable is perfectly voltage clamped at one end. 2. The apparent voltage dependence, activation, and inactivation of the clamp current depend on the distribution of the membrane slope conductance along the cable; this depends on 1) the distribution of the inward current along the cable and 2) the amplitude of the inward current relative to the amplitudes of the leak and voltage-dependent outward currents. 3. Under control conditions, the membrane voltage decays steeply with distance from the command voltage at the clamp site to almost resting potential for most of the rest of the cable. This is because the leak and outward current are dominant over the inward current. The inward current is activated primarily at the clamped part of the cable. Clamp currents are activated instantaneously. The clamp-current current-voltage (I-V) relation is less steep with depolarization because the membrane potential for locations away from the clamp site lags behind the clamp potential. 4. When the conductances for leak and outward current are reduced by 90%, these conductances lose their dominance. The membrane slope conductance now has a range with negative values.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 68 (2) ◽  
pp. 496-508 ◽  
Author(s):  
O. Kiehn ◽  
R. M. Harris-Warrick

1. Serotonergic modulation of a hyperpolarization-activated inward current, Ih, and a calcium-dependent outward current, Io(Ca), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric ganglion (STG). 2. Hyperpolarization of the membrane from rest with maintained current pulses resulted in a slow time-dependent relaxation back toward rest and a depolarizing overshoot after termination of the current pulse. In voltage clamp, hyperpolarizing commands negative to approximately -70 mV caused a slowly developing inward current, Ih, which showed no inactivation. Repolarization back to the holding potential of -50 mV revealed a slow inward tail current. 3. The reversal potential for Ih was approximately -35 mV. Raising extracellular K+ concentration ([K+]o) from 11 to 22 mM enhanced, whereas decreasing extracellular Na+ concentration ([Na+]o) reduced the amplitude of Ih. These results indicate that Ih in DG is carried by both K+ and Na+ ions. 4. Bath application of serotonin (5-HT; 10 microM) caused a marked increase in the amplitude of Ih through its active voltage ranges. 5. The time course of activation of Ih was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of Ih. 5-HT also slowed the rate of deactivation of the Ih tail on repolarization to -50 mV. 6. The activation curve for the conductance (Gh) underlying Ih was obtained by analyzing tail currents. 5-HT shifted the half activation for Gh from approximately -105 mV in control to -95 mV, resulting in an increase in the amplitude of Gh active at rest. 7. Two to 4 mM Cs+ abolished Ih, whereas barium (200 microM to 2 mM) had only weak suppressing effects on Ih. Concomitantly, Cs+ also blocked the 5-HT-induced inward current and conductance increase seen at voltages negative to rest. In current clamp, Cs+ caused DG to hyperpolarize 3-4 mV from rest, suggesting that Ih is partially active at rest and contributes to the resting membrane potential. 8. Depolarizing voltage commands from a holding potential of -50 mV resulted in a total outward current (Io) with an initial transient component and a sustained steady-state component. Application of 5-HT reduced both the transient and sustained components of Io. 9. Io was reduced by 10-20 mM tetraethylammonium (TEA), suggesting that it is primarily a K+ current.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 77 (6) ◽  
pp. 383-397
Author(s):  
Qi-Ying Liu ◽  
Mario Vassalle

The role of Na-Ca exchange in the membrane potential changes caused by repetitive activity ("drive") was studied in guinea pig single ventricular myocytes exposed to different [Ca2+]o. The following results were obtained. (i) In 5.4 mM [Ca2+]o, the action potentials (APs) gradually shortened during drive, and the outward current during a train of depolarizing voltage clamp steps gradually increased. (ii) The APs shortened more and were followed by a decaying voltage tail during drive in the presence of 5 mM caffeine; the outward current became larger and there was an inward tail current on repolarization during a train of depolarizing steps. (iii) These effects outlasted drive so that immediately after a train of APs, currents were already bigger and, after a train of steps, APs were already shorter. (iv) In 0.54 mM [Ca2+]o, the above effects were much smaller. (v) In high [Ca2+]o APs were shorter and outward currents larger than in low [Ca2+]o. (vi) In 10.8 mM [Ca2+]o, both outward and inward currents during long steps were exaggerated by prior drive, even with steps (+80 and +120 mV) at which there was no apparent inward current identifiable as ICa. (vii) In 0.54 mM [Ca2+]o, the time-dependent outward current was small and prior drive slightly increased it. (viii) During long steps, caffeine markedly increased outward and inward tail currents, and these effects were greatly decreased by low [Ca2+]o. (ix) After drive in the presence of caffeine, Ni2+ decreased the outward and inward tail currents. It is concluded that in the presence of high [Ca2+]o drive activates outward and inward Na-Ca exchange currents. During drive, the outward current participates in the plateau shortening and the inward tail current in the voltage tail after the action potential.Key words: ventricular myocytes, repetitive activity, outward and inward Na-Ca exchange currents, caffeine, nickel.


1993 ◽  
Vol 10 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Jon H. Hayashi ◽  
Ann E. Stuart

AbstractWe have described the currents flowing across the presynaptic membranes of the four median photoreceptors of the giant barnacle, Balanus nubilus, using a quasi-voltage clamp arrangement. Membrane potential, measured in the terminal region of one photoreceptor, was controlled in all four terminals by feedback current supplied through the nerve containing the photoreceptors’ axons. The [Ca2+] ∘ in the saline was reduced to decrease the Ca2+ current, enabling better voltage control, and tetraethylammonium ion (TEA, 20 mM) was added to block a fast voltage-dependent K+ conductance.Depolarizing voltage steps from the resting potential in the dark (−60 mV) evoked slow, inward Ca2+-dependent currents which could be blocked by Co2+, Mg2+, or Cd2+. The Ca2+ currents were followed by large outward currents that persisted for many seconds after the offset of moderate or large pulses. These tail currents increased in magnitude and duration with pulse duration and reversed at about −80 mV, consistent with previous evidence for a Ca2+-activated K+ conductance in this membrane. When the Ca2+-activated outward current was reduced to zero by increasing the [K+]∘ so as to set EK at −20 mV, and then stepping the voltage to this value, the step evoked a steady inward Ca2+ current. Thus, the Ca2+ current did not show voltage- or Ca2+-dependent inactivation. When Ba2+ was substituted for Ca2+, 500-ms depolarizing steps evoked steady inward currents but no outward currents. In any given experiment, the activation voltage of the Ca2+ or Ba2+ current did not depend on holding potential.At the barnacle photoreceptor’s synapse, the postsynaptic cell adapts to maintained presynaptic voltage by a mechanism that is not understood. We conclude that neither Ca2+ current inactivation nor a shift in activation voltage with holding potential can account for this adaptation.


Sign in / Sign up

Export Citation Format

Share Document