scholarly journals Independent component filters of natural images compared with simple cells in primary visual cortex

1998 ◽  
Vol 265 (1394) ◽  
pp. 359-366 ◽  
Author(s):  
J. H. van Hateren ◽  
A. van der Schaaf
2013 ◽  
Vol 33 (28) ◽  
pp. 11372-11389 ◽  
Author(s):  
J. Zhuang ◽  
C. R. Stoelzel ◽  
Y. Bereshpolova ◽  
J. M. Huff ◽  
X. Hei ◽  
...  

2012 ◽  
Vol 24 (5) ◽  
pp. 1271-1296 ◽  
Author(s):  
Michael Teichmann ◽  
Jan Wiltschut ◽  
Fred Hamker

The human visual system has the remarkable ability to largely recognize objects invariant of their position, rotation, and scale. A good interpretation of neurobiological findings involves a computational model that simulates signal processing of the visual cortex. In part, this is likely achieved step by step from early to late areas of visual perception. While several algorithms have been proposed for learning feature detectors, only few studies at hand cover the issue of biologically plausible learning of such invariance. In this study, a set of Hebbian learning rules based on calcium dynamics and homeostatic regulations of single neurons is proposed. Their performance is verified within a simple model of the primary visual cortex to learn so-called complex cells, based on a sequence of static images. As a result, the learned complex-cell responses are largely invariant to phase and position.


2017 ◽  
Author(s):  
Santiago A. Cadena ◽  
George H. Denfield ◽  
Edgar Y. Walker ◽  
Leon A. Gatys ◽  
Andreas S. Tolias ◽  
...  

AbstractDespite great efforts over several decades, our best models of primary visual cortex (V1) still predict spiking activity quite poorly when probed with natural stimuli, highlighting our limited understanding of the nonlinear computations in V1. Recently, two approaches based on deep learning have been successfully applied to neural data: On the one hand, transfer learning from networks trained on object recognition worked remarkably well for predicting neural responses in higher areas of the primate ventral stream, but has not yet been used to model spiking activity in early stages such as V1. On the other hand, data-driven models have been used to predict neural responses in the early visual system (retina and V1) of mice, but not primates. Here, we test the ability of both approaches to predict spiking activity in response to natural images in V1 of awake monkeys. Even though V1 is rather at an early to intermediate stage of the visual system, we found that the transfer learning approach performed similarly well to the data-driven approach and both outperformed classical linear-nonlinear and wavelet-based feature representations that build on existing theories of V1. Notably, transfer learning using a pre-trained feature space required substantially less experimental time to achieve the same performance. In conclusion, multi-layer convolutional neural networks (CNNs) set the new state of the art for predicting neural responses to natural images in primate V1 and deep features learned for object recognition are better explanations for V1 computation than all previous filter bank theories. This finding strengthens the necessity of V1 models that are multiple nonlinearities away from the image domain and it supports the idea of explaining early visual cortex based on high-level functional goals.Author summaryPredicting the responses of sensory neurons to arbitrary natural stimuli is of major importance for understanding their function. Arguably the most studied cortical area is primary visual cortex (V1), where many models have been developed to explain its function. However, the most successful models built on neurophysiologists’ intuitions still fail to account for spiking responses to natural images. Here, we model spiking activity in primary visual cortex (V1) of monkeys using deep convolutional neural networks (CNNs), which have been successful in computer vision. We both trained CNNs directly to fit the data, and used CNNs trained to solve a high-level task (object categorization). With these approaches, we are able to outperform previous models and improve the state of the art in predicting the responses of early visual neurons to natural images. Our results have two important implications. First, since V1 is the result of several nonlinear stages, it should be modeled as such. Second, functional models of entire visual pathways, of which V1 is an early stage, do not only account for higher areas of such pathways, but also provide useful representations for V1 predictions.


2000 ◽  
Vol 84 (2) ◽  
pp. 909-926 ◽  
Author(s):  
Jeffrey S. Anderson ◽  
Matteo Carandini ◽  
David Ferster

The input conductance of cells in the cat primary visual cortex (V1) has been shown recently to grow substantially during visual stimulation. Because increasing conductance can have a divisive effect on the synaptic input, theoretical proposals have ascribed to it specific functions. According to the veto model, conductance increases would serve to sharpen orientation tuning by increasing most at off-optimal orientations. According to the normalization model, conductance increases would control the cell's gain, by being independent of stimulus orientation and by growing with stimulus contrast. We set out to test these proposals and to determine the visual properties and possible synaptic origin of the conductance increases. We recorded the membrane potential of cat V1 cells while injecting steady currents and presenting drifting grating patterns of varying contrast and orientation. Input conductance grew with stimulus contrast by 20–300%, generally more in simple cells (40–300%) than in complex cells (20–120%), and in simple cells was strongly modulated in time. Conductance was invariably maximal for stimuli of the preferred orientation. Thus conductance changes contribute to a gain control mechanism, but the strength of this gain control does not depend uniquely on contrast. By assuming that the conductance changes are entirely synaptic, we further derived the excitatory and inhibitory synaptic conductances underlying the visual responses. In simple cells, these conductances were often arranged in push-pull: excitation increased when inhibition decreased and vice versa. Excitation and inhibition had similar preferred orientations and did not appear to differ in tuning width, suggesting that the intracortical synaptic inputs to simple cells of cat V1 originate from cells with similar orientation tuning. This finding is at odds with models where orientation tuning in simple cells is achieved by inhibition at off-optimal orientations or sharpened by inhibition that is more broadly tuned than excitation.


Sign in / Sign up

Export Citation Format

Share Document