scholarly journals Are rates of molecular evolution in mammals substantially accelerated in warmer environments? Reply

2011 ◽  
Vol 278 (1710) ◽  
pp. 1294-1297 ◽  
Author(s):  
Len N. Gillman ◽  
Paul McBride ◽  
D. Jeanette Keeling ◽  
Howard A. Ross ◽  
Shane D. Wright
Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1403-1417 ◽  
Author(s):  
David J Cutler

Abstract Rates of molecular evolution at some protein-encoding loci are more irregular than expected under a simple neutral model of molecular evolution. This pattern of excessive irregularity in protein substitutions is often called the “overdispersed molecular clock” and is characterized by an index of dispersion, R(T) > 1. Assuming infinite sites, no recombination model of the gene R(T) is given for a general stationary model of molecular evolution. R(T) is shown to be affected by only three things: fluctuations that occur on a very slow time scale, advantageous or deleterious mutations, and interactions between mutations. In the absence of interactions, advantageous mutations are shown to lower R(T); deleterious mutations are shown to raise it. Previously described models for the overdispersed molecular clock are analyzed in terms of this work as are a few very simple new models. A model of deleterious mutations is shown to be sufficient to explain the observed values of R(T). Our current best estimates of R(T) suggest that either most mutations are deleterious or some key population parameter changes on a very slow time scale. No other interpretations seem plausible. Finally, a comment is made on how R(T) might be used to distinguish selective sweeps from background selection.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Peng-Fei Ma ◽  
Maria S. Vorontsova ◽  
Olinirina Prisca Nanjarisoa ◽  
Jacqueline Razanatsoa ◽  
Zhen-Hua Guo ◽  
...  

Author(s):  
Nahid Shokri Bousjein ◽  
Simon Tierney ◽  
Michael Gardner ◽  
Michael Schwarz

Adaptive evolutionary theory argues that organisms with larger effective population size (Ne) should have higher rates of adaptive evolution and therefore greater capacity to win evolutionary arm races. However, in some certain cases species with much smaller Ne may be able to survive beside their opponents for an extensive evolutionary time. Neutral theory predicts that accelerated rates of molecular evolution in organisms with exceedingly small Ne is due to the effects of genetic drift and fixation of slightly deleterious mutations. We test this prediction in two obligate social parasite species and their respective host species from the bee tribe Allodapini. The parasites (genus Inquilina) have been locked into a tight coevolutionary arm races with their exclusive hosts (genus Exoneura) for ~15 million years, even though Inquilina exhibit Ne that are an order of magnitude smaller than their host. In this study, we compared rates of molecular evolution between host and parasite using nonsynonymous to synonymous substitution rate ratios (dN/dS) of eleven mitochondrial protein coding genes sequenced from transcriptomes. Tests of selection on mitochondrial genes indicated no significant differences between host and parasite dN/dS, with evidence for purifying selection acting on all mitochondrial genes of host and parasite species. Several potential factors which could weaken the inverse relationship between Ne and rate of molecular evolution are discussed.


1992 ◽  
Vol 6 ◽  
pp. 68-68
Author(s):  
Timothy Collins

The marine vicariant event resulting from the Pliocene emergence of the Central American Isthmus presents a unique opportunity for calibrating rates of molecular evolution. The synchronous fragmentation of the ranges of previously widespread taxa into Western Atlantic and Eastern Pacific components (geminates) enables one to make comparisons of rates among higher taxa on the same time scale and to evaluate the regularity of rates of molecular evolution among all species sampled. Other advantages of this approach are that the time scale (approximately 3 Ma) is one of particular interest for evolutionary biologists concerned with speciation and one that minimizes the ambiguities associated with augmentation of divergence values to account for multiple hits at a site. The divergence values derived for geminate pairs are independent, allowing statistical evaluation of variance in rates.The current popularity of the relative rates test as the final arbiter of questions regarding rates and rate variation is primarily a matter of convenience and not a reflection of methodological superiority. A review of the commonly used techniques for calibrating rates of molecular evolution shows that each approach has limitations. Temporally based calibrations of rates are necessary complements to time-independent comparisons.Interpretation of transisthmian molecular comparisons in the literature have in many cases been unduly influenced and confused by molecular clock assumptions and the restriction of studies to single higher-level taxa. Analysis of the apparently contradictory published data as well as new results from sequence comparisons of fishes, urchins and snails suggests a synthesis: taxon specific rates of molecular evolution, with reduced variance within taxonomic groups and great variance among all groups sampled.


Paleobiology ◽  
1994 ◽  
Vol 20 (3) ◽  
pp. 259-273 ◽  
Author(s):  
Andrew B. Smith ◽  
D. T. J. Littlewood

Molecular data are becoming an indispensable tool for the reconstruction of phylogenies. Fossil molecular data remain scarce, but have the potential to resolve patterns of deep branching and provide empirical tests of tree reconstruction techniques. A total evidence approach, combining and comparing complementary morphological, molecular and stratigraphical data from both recent and fossil taxa, is advocated as the most promising way forward because there are several well-established problems that can afflict the analysis of molecular sequence data sometimes resulting in spurious tree topologies. The integration of evidence allows us to: (1) choose suitable taxa for molecular phylogenetic analysis for the question at hand; (2) discriminate between conflicting hypotheses of taxonomic relationship and phylogeny; (3) evaluate procedures and assumptions underlying methods of building trees; and (4) estimate rates of molecular evolution in the geological past. Paleontology offers a set of independent data for comparison and corroboration of analyses and provides the only direct means of calibrating molecular trees, thus giving insight into rates of molecular evolution in the geological past.


2011 ◽  
Vol 20 (15) ◽  
pp. 3087-3101 ◽  
Author(s):  
SIMON Y. W. HO ◽  
ROBERT LANFEAR ◽  
LINDELL BROMHAM ◽  
MATTHEW J. PHILLIPS ◽  
JULIEN SOUBRIER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document