Energy from the ocean

Renewable ocean energy sources can eventually supply a large fraction of man’s energy needs, starting in the 1990s. Their use will require technologies for converting to useful form such naturally occurring ocean phenomena as tides, currents, waves, salinity gradients and thermal gradients. In view of the technology’s substantial resource potential, its comparatively advanced stage of development among the ocean energy options, and other relatively attractive features, this paper focuses on ocean thermal energy conversion (OTEC). However, much of the paper’s content has relevance to the use of the other ocean energy sources. Techniques of ocean thermal energy conversion are summarized, along with the development status of the required power system and ocean system components. The worldwide ocean thermal resource is assessed as a function of geography and time. Environmental impacts and siting considerations are treated. Diverse commercial market applications of OTEC are summarized, based upon the two key options for OTEC of providing electricity by submarine cable and of manufacturing energy-intensive products for shipment to dispersed markets. By-products of OTEC such as fresh water and nutrients for mariculture are discussed. The constructability and deployment of OTEC systems are considered in the context of their overlap with the related technology for building and deploying offshore petroleum facilities. Much offshore petroleum industry technology and many of its construction facilities are shown to be relevant to OTEC requirements. OTEC cost projections are related to the competitive costs of other sources of continuous electrical energy. The prospects for the emergence of a commercial OTEC industry in the 1990s are analysed, including a description of OTEC development activity in various nations. Scenarios for the industrial development of commercial OTEC plants and plantships are presented for electricity applications and for energy-intensive products such as ammonia, hydrogen and aluminium. Economic, financial and international impacts of OTEC are explored. Market penetration forecasts for the 1990s are obtained, with a consideration of the problems and potential of the large early market in developing nations for OTEC-derived electricity. It is shown how OTEC-derived electricity and products, by increasing energy supply in an energy-interdependent world, could help reduce foreseeable polarizations between nations over limited global energy resources.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2192
Author(s):  
Robert J. Brecha ◽  
Katherine Schoenenberger ◽  
Masaō Ashtine ◽  
Randy Koon Koon

Many Caribbean island nations have historically been heavily dependent on imported fossil fuels for both power and transportation, while at the same time being at an enhanced risk from the impacts of climate change, although their emissions represent a very tiny fraction of the global total responsible for climate change. Small island developing states (SIDSs) are among the leaders in advocating for the ambitious 1.5 °C Paris Agreement target and the transition to 100% sustainable, renewable energy systems. In this work, three central results are presented. First, through GIS mapping of all Caribbean islands, the potential for near-coastal deep-water as a resource for ocean thermal energy conversion (OTEC) is shown, and these results are coupled with an estimate of the countries for which OTEC would be most advantageous due to a lack of other dispatchable renewable power options. Secondly, hourly data have been utilized to explicitly show the trade-offs between battery storage needs and dispatchable renewable sources such as OTEC in 100% renewable electricity systems, both in technological and economic terms. Finally, the utility of near-shore, open-cycle OTEC with accompanying desalination is shown to enable a higher penetration of renewable energy and lead to lower system levelized costs than those of a conventional fossil fuel system.


2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Sathiabama T. T. Thirugnana ◽  
Abu Bakar Jaafar ◽  
Takeshi Yasunaga ◽  
Tsutomu Nakaoka ◽  
Yasuyuki Ikegami ◽  
...  

The Malaysian Government has set a target of achieving 20% penetration of Renewable Energy (RE) in the energy mix spectrum by 2025. In order to get closer to the target, Ocean Thermal Energy Conversion (OTEC) aligned with solar PV, biogas and biomass energy sources must be evaluated and comprehended. Hybrid OTEC systems consisting of energy and water production are currently under research and validation. Therefore, for the construction of a commercial OTEC plant, 1 MW or 2.5 MW, the choice of a strategic location or potential site is vital. In this paper, oceanographic data such as seawater temperature, depth, salinity and dissolved oxygen obtained from the Japan Oceanographic Data Center (JODC) for Semporna, Tawau, Kudat, Pulau Layang-Layang and Pulau Kalumpang in Sabah, Malaysia, are reported. The RE available from the Exclusive Economic Zone (EEZ) on the coast of Sabah was estimated based on the JODC data obtained. There were no remarkable differences in temperatures between the five sites, which were reported as approximately 27 °C at the surface and 7 °C at depths below 600 m. The surface salinities below 100 m at those sites were slightly lower than the deeper waters, where the salinity increased up to approximately 34.5 PSU. Dissolved oxygen data from the Pulau Kalumpang site showed a slight increment to approximately 4.7 mL/L at depth intervals below 50 m, before declining steadily to approximately 1.7 mL/L along with the depth. The temperature-salinity profiles of the Malaysian sites were congruent with those of Palau, Kumejima and Okinawa, but not with that of Fiji, where the salinity profile showed a distinct variation at the relative depth (below 200 m). Estimates of RE using two different methods were used to prove the potential of OTEC in Malaysia.


Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 120121
Author(s):  
Jannis Langer ◽  
Aida Astuti Cahyaningwidi ◽  
Charis Chalkiadakis ◽  
Jaco Quist ◽  
Olivier Hoes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document