Optical nonlinearity and bistability in liquid crystals

Molecular reorientation and laser heating induced by an optical field can yield significant changes in the refractive indices in a nematic liquid crystal. A c.w. laser beam is intense enough to induce a phase retardation much larger than 2pi in a nematic film less than 100 pm thick. Optical bistability in such a film sandwiched between mirrors can be readily observed. Coupling between the two mechanisms for induced refractive indices can lead to interesting results in the bistable operation.

2014 ◽  
Vol 22 (1) ◽  
Author(s):  
T. Devi ◽  
B. Choudhury ◽  
A. Bhattacharjee ◽  
R. Dabrowski

AbstractOptical studies have been carried out on two fluorinated isothiocyanato nematic liquid crystal (LC) compounds 4′-butylcyclohexyl-3, 5-difluoro-4-isothiocyanatobiphenyl and 4′-pentylcyclohexyl-3, 5-difluoro-4-isothiocynatobiphenyl. Transition temperatures of the two samples were confirmed using a polarizing microscope. The two LC compounds were found to exhibit fairly high clearing temperatures. Measurements of refractive indices of the two compounds were done by using thin prism method with He-Ne laser beam of wavelength 630 nm. Birefringence of the two LC compounds was calculated from the measured refractive indices. Both the compounds are found to display fairly high values of birefringence. Validation of a modified four-parameter model, based on Vuks equation describing the temperature dependence of refractive indices of the two liquid crystals, is also presented in this paper. The model is validated by fitting the experimentally measured values of refractive indices, birefringence and average refractive indices of the two nematic LCs with the theoretical values. In this paper, the calculation of order parameters of the LCs is presented by using two methods: direct extrapolation method based solely on the birefringence data and by using modified Vuks method based on Haller’s extrapolation. As observed from the obtained results, this procedure of calculating order parameter gives very reasonable results.


2018 ◽  
Vol 10 (4) ◽  
pp. 109
Author(s):  
Filip Sala

By lunching the beam into the chiral nematic liquid crystals it is possible to achieve a non-diffractive beam similar to a soliton. This effect is caused by the molecular reorientation i.e. nonlinear response of the material forming the areas of higher refractive index. Diffraction is suppressed by the focusing effect. For appropriate launching conditions it is also possible to achieve a beam which splits into two or more separate beams. Such phenomenon is discussed in this article and analyzed theoretical. To model this effect Fully Vectorial Beam Propagation Method coupled with the Frank-Oseen elastic theory is used. Simulations are performed for various input beam powers, widths, polarization angles and launching positions. Full Text: PDF ReferencesG. Assanto and M. A. Karpierz, "Nematicons: self-localised beams in nematic liquid crystals", Liq. Cryst. 36, 1161–1172 (2009) CrossRef G. Assanto, Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals, John Wiley & Sons Inc. Hoboken, New Jersey (2013) DirectLink A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, "Soliton gating and switching in liquid crystal light valve", Appl. Phys. Lett. 96, 071104 (2010). CrossRef D. Melo, I. Fernandes, F. Moraes, S. Fumeron, and E. Pereira, "Thermal diode made by nematic liquid crystal", Phys. Lett. A 380, 3121 – 3127 (2016). CrossRef U. Laudyn, M. Kwaśny, F. A. Sala, M. A. Karpierz, N. F. Smyth, G. Assanto, "Curved optical solitons subject to transverse acceleration in reorientational soft matter", Sci. Rep. 7, 12385 (2017) CrossRef M. Kwaśny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, G. Assanto, "Self-guided beams in low-birefringence nematic liquid crystals", Phys. Rev. A 86, 013824 (2012) CrossRef F. A. Sala, M. M. Sala-Tefelska, "Optical steering of mutual capacitance in a nematic liquid crystal cell", J. Opt. Soc. Am. B. 35, 133-139 (2018) CrossRef U. A. Laudyn, A. Piccardi, M. Kwasny, M. A. Karpierz, G. Assanto, "Thermo-optic soliton routing in nematic liquid crystals", Opt. Lett. 43, 2296-2299 (2018) CrossRef F. A. Sala, M. M. Sala-Tefelska, M. J. Bujok, J. "Influence of temperature diffusion on molecular reorientation in nematic liquid crystals", Nonlinear Opt. Phys. Mater. 27, 1850011 (2018) CrossRef I-C Khoo Liquid crystals John Wiley & Sons, Inc (2007) DirectLink P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon Press (1995) DirectLink U. A. Laudyn, P. S. Jung, M. A. Karpierz, G. Assanto, "Quasi two-dimensional astigmatic solitons in soft chiral metastructures", Sci. Rep. 6, 22923 (2016) CrossRef J. Beeckman, A. Madani, P. J. M. Vanbrabant, P. Henneaux, S-P. Gorza, M. Haelterman, "Switching and intrinsic position bistability of soliton beams in chiral nematic liquid crystals", Phys. Rev. A 83, 033832 (2011) CrossRef A. Madani, J. Beeckman, K. Neyts, "An experimental observation of a spatial optical soliton beam and self splitting of beam into two soliton beams in chiral nematic liquid crystal", Opt. Commun. 298–299, 222-226, (2013) CrossRef G. D. Ziogos, E. E. Kriezis, "Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method", Opt. Quant. Electron 40, 10 (2008) CrossRef F. A. Sala, M. A. Karpierz, "Chiral and nonchiral nematic liquid-crystal reorientation induced by inhomogeneous electric fields", J. Opt. Soc. Am. B 29, 1465-1472 (2012) CrossRef F. A. Sala, M. A. Karpierz, "Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals", Opt. Express 20, 13923-13938 (2012) CrossRef F. A. Sala, "Design of false color palettes for grayscale reproduction", Displays, 46, 9-15 (2017) CrossRef


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Marek Sierakowski ◽  
Małgorzata Teterycz

AbstractOrientational nonlinearity is the major mechanism of nonlinear optical phenomena observed in liquidcrystalline phase while it does not appear to such extent in any other materials. It is caused by distortion of initial molecular arrangement of an anisotropic medium induced by optical field. Deformation of the anisotropic structure means spatial changes of refractive index of the medium. This effect has been studied in earnest since the 1980s as its application became more apparent. In this paper, some results of experimental examination of molecular reorientation in nematics by optical field are presented, which are not explained in frame of existing Oseen-Frank model and Erickson-Leslie continuous theory. Possible reasons of this discordance are considered and a way of explanation is suggested.


Sign in / Sign up

Export Citation Format

Share Document