The heliosphere and the Ulysses mission

The interplanetary medium consists primarily of the supersonic solar wind, carrying the frozen-in magnetic field extending from the solar corona. The properties of this medium are controlled by the state of the corona and by dynamic processes occurring in the medium itself. As a result, there are significant variations in those properties as a function of heliolatitude. In situ observations over the past three decades have been largely confined to the neighbourhood of the solar equatorial plane. While many of the important processes have been identified and studied extensively, observations are required as a function of heliolatitude to define large-scale structures and their dependence on processes in the solar corona. The Ulysses mission, launched in October 1990, is the first space probe dedicated to the exploration of the heliosphere out of the ecliptic plane. By January 1994, the spacecraft had reached a heliolatitude of 50° south. The first results of the mission are summarized here, including the evolution and disappearance of the interplanetary magnetic sector structure; the onset of the dominance of the high-speed solar wind stream originating in the expanding southern coronal hole; observations of the signatures of complex coronal mass ejections; the high-latitude structure of the heliospheric magnetic field, and the evolution of corotating interaction regions as a function of heliolatitude. In particular, the abrupt change in the rotation rate of the sector structure in mid-1992, followed by the equatorward extension of the southern polar coronal hole, represent new observations related to the evolution of large-scale coronal structures and solar magnetic fields and to processes controlling the solar activity cycle.

2020 ◽  
Author(s):  
Timofey Sagitov ◽  
Roman Kislov

<p>High speed streams originating from coronal holes are long-lived plasma structures that form corotating interaction regions (CIRs) or stream interface regions (SIRs) in the solar wind. The term CIR is used for streams existing for at least one solar rotation period, and the SIR stands for streams with a shorter lifetime. Since the plasma flows from coronal holes quasi-continuously, CIRs/SIRs simultaneously expand and rotate around the Sun, approximately following the Parker spiral shape up to the Earth’s orbit.</p><p>Coronal hole streams rotate not only around the Sun but also around their own axis of simmetry, resembling a screw. This effect may occur because of the following mechanisms: (1) the existence of a difference between the solar wind speed at different sides of the stream, (2) twisting of the magnetic field frozen into the plasma, and  (3) a vortex-like motion of the edge of the mothering coronal hole at the Sun. The screw type of the rotation of a CIR/SIR can lead to centrifugal instability if CIR/SIR inner layers have a larger angular velocity than the outer. Furthermore, the rotational plasma movement and the stream distortion can twist magnetic field lines. The latter contributes to the pinch effect in accordance with a well-known criterion of Suydam instability (Newcomb, 1960, doi: 10.1016/0003-4916(60)90023-3). Owing to the presence of a cylindrical current sheet at the boundary of a coronal hole, conditions for tearing instability can also appear at the CIR/SIR boundary. Regardless of their geometry, large scale current sheets are subject to various instabilities generating plasmoids. Altogether, these effects can lead to the formation of a turbulent region within CIRs/SIRs, making them filled with current sheets and plasmoids. </p><p>We study a substructure of CIRs/SIRs, characteristics of their rotation in the solar wind, and give qualitative estimations of possible mechanisms which lead to splitting of the leading edge a coronal hole flow and consequent formation of current sheets within CIRs/SIRs.</p>


2000 ◽  
Vol 179 ◽  
pp. 439-444
Author(s):  
S. Ananthakrishnan

AbstractThe ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, recurring high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during the solar maximum activity is better associated with the closed field regions, which also give rise to solar flares and coronal mass ejections (CME’s). The latter events increase significantly, as the cycle maximum takes place. We have recently shown that in the case of energetic flares one may be able to track the associated disturbances almost on a one to one basis from a distance of 0.2 to 1 AU using IPS methods. Time dependent 3D MHD models which are constrained by IPS observations are being developed. These models are able to simulate general features of the solar-generated disturbances. Advances in this direction may lead to prediction of heliospheric propagation of these disturbances throughout the solar system.


2019 ◽  
Vol 5 (3) ◽  
pp. 50-63
Author(s):  
Дмитрий Ерофеев ◽  
Dmitry Erofeev

Using data with hourly resolution obtained in near-Earth heliosphere in 1965–2014, we have calculated statistical characteristics of the angles describing the direction of the interplanetary magnetic field (IMF): root-mean-square deviations of azimuthal and elevation angles, asymmetries of their distributions, and coefficient of correlation of the angles. It has been shown that the above characteristics varied in the course of solar cycle, and some of them changed their signs when solar polar magnetic field reversed. The results obtained from the experimental data analysis were compared with a model describing transport of large-scale disturbances of IMF lines by the inhomogeneous solar wind. The comparison has shown that the variations in the angular distribution of IMF in the course of solar cycle probably occur due to the appearance of the large-scale latitudinal gradient of solar wind velocity during solar minima. In addition, the angular distribution of IMF has been found to be substantially affected by the longitudinal velocity gradient in trailing parts of high-speed streams and short-term local-scale variations in velocity gradients.


1994 ◽  
Vol 144 ◽  
pp. 151-154
Author(s):  
J. C. Noëns ◽  
B. Pech ◽  
J. Xanthakis ◽  
H. Mavromichalaki ◽  
V. Tritakis ◽  
...  

AbstractSome new results are presented and discussed about the problem of the asymmetries in the observed corona between the east and west limbs. “Local effects” are analysed. Relations within one eleven-year solar activity cycle are shown.


2019 ◽  
Vol 5 (3) ◽  
pp. 42-53
Author(s):  
Дмитрий Ерофеев ◽  
Dmitry Erofeev

Using data with hourly resolution obtained in near-Earth heliosphere in 1965–2014, we have calculated statistical characteristics of the angles describing the direction of the interplanetary magnetic field (IMF): root-mean-square deviations of azimuthal and elevation angles, asymmetries of their distributions, and coefficient of correlation of the angles. It has been shown that the above characteristics varied in the course of solar cycle, and some of them changed their signs when solar polar magnetic field reversed. The results obtained from the experimental data analysis were compared with a model describing transport of large-scale disturbances of IMF lines by the inhomogeneous solar wind. The comparison has shown that the variations in the angular distribution of IMF in the course of solar cycle probably occur due to the appearance of the large-scale latitudinal gradient of solar wind velocity during solar minima. In addition, the angular distribution of IMF has been found to be substantially affected by the longitudinal velocity gradient in trailing parts of high-speed streams and short-term local-scale variations in velocity gradients.


Solar Physics ◽  
2005 ◽  
Vol 227 (2) ◽  
pp. 387-399 ◽  
Author(s):  
Kazuyuki Hakamada ◽  
Masayoshi Kojima ◽  
Tomoaki Ohmi ◽  
Munetoshi Tokumaru ◽  
Ken’ichi Fujiki

2020 ◽  
Vol 636 ◽  
pp. A103
Author(s):  
Verena Heidrich-Meisner ◽  
Lars Berger ◽  
Robert F. Wimmer-Schweingruber

Context. The properties of a solar wind stream are determined by its source region and by transport effects. Independently of the solar wind type, the solar wind measured in situ is always affected by both. This means that reliably determining the solar wind type from in situ observations is useful for the analysis of its solar origin and its evolution during the travel time to the spacecraft that observes the solar wind. In addition, the solar wind type also influences the interaction of the solar wind with other plasma such as Earth’s magnetosphere. Aims. We consider the proton-proton collisional age as an ordering parameter for the solar wind at 1 AU and explore its relation to the solar wind classification scheme developed by Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70). We use this to show that explicit magnetic field information is not required for this solar wind classification. Furthermore, we illustrate that solar wind classification schemes that rely on threshold values of solar wind parameters should depend on the phase in the solar activity cycle since the respective parameters change with the solar activity cycle. Methods. The categorization of the solar wind following Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) was taken as our reference for determining the solar wind type. Based on the observation that the three basic solar wind types from this categorization cover different regimes in terms of proton-proton collisional age acol, p-p, we propose a simplified solar wind classification scheme that is only based on the proton-proton collisional age. We call the resulting method the PAC solar wind classifier. For this purpose, we derive time-dependent threshold values in the proton-proton collisional age for two variants of the proposed PAC scheme: (1) similarity-PAC is based on the similarity to the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) scheme, and (2) distribution-PAC is based directly on the distribution of the proton-proton collisional age. Results. The proposed simplified solar wind categorization scheme based on the proton-proton collisional age represents an equivalent alternative to the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) solar wind classification scheme and leads to a classification that is very similar to the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) scheme. The proposed PAC solar wind categorization separates coronal hole wind from helmet-streamer plasma as well as helmet-streamer plasma (slow solar wind without a current sheet crossing) from sector-reversal plasma (slow solar wind with a current sheet crossing). Unlike the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) scheme, PAC does not require information on the magnetic field as input. Conclusions. The solar wind is well ordered by the proton-proton collisional age. This implies underlying intrinsic relationships between the plasma properties, in particular, proton temperature and magnetic field strength in each plasma regime. We argue that sector-reversal plasma is a combination of particularly slow and dense solar wind and most stream interaction boundaries. Most solar wind parameters (e.g., the magnetic field strength, B, and the oxygen charge state ratio no7+/no6+) change with the solar activity cycle. Thus, all solar wind categorization schemes based on threshold values need to be adapted to the solar activity cycle as well. Because it does not require magnetic field information but only proton plasma measurements, the proposed PAC solar wind classifier can be applied directly to solar wind data from the Solar and Heliospheric Observatoty (SOHO), which is not equipped with a magnetometer.


Sign in / Sign up

Export Citation Format

Share Document