scholarly journals Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations

Author(s):  
Boris Kolev

This paper is a survey article on bi-Hamiltonian systems on the dual of the Lie algebra of vector fields on the circle. Here, we investigate the special case where one of the structures is the canonical Lie–Poisson structure and the second one is constant. These structures, called affine or modified Lie–Poisson structures, are involved in the integrability of certain Euler equations that arise as models for shallow water waves.

1987 ◽  
Vol 10 (3) ◽  
pp. 557-562 ◽  
Author(s):  
Yilmaz Akyildiz

We consider the system of nonlinear differential equations governing shallow water waves over a uniform or sloping bottom. By using the hodograph method we construct solutions, conservation laws, and Böcklund transformations for these equations. We show that these constructions are canonical relative to a symplectic form introduced by Manin.


Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Kenan Šehić ◽  
Henrik Bredmose ◽  
John D. Sørensen ◽  
Mirza Karamehmedović

2000 ◽  
Vol 24 (10) ◽  
pp. 649-661 ◽  
Author(s):  
Mohamed Atef Helal

This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating rectangular basin. The equations of motion of such a problem with its boundary conditions are reduced to a system of nonlinear equations, which is to be solved by applying the shallow water approximation theory. Each unknown of the problem is expanded asymptotically in terms of the small parameterϵwhich generally depends on some intrinsic quantities of the problem of study. For each order of approximation, the nonlinear system of equations is presented successively. It is worthy to note that such a study has useful applications in the oceanography.


Sign in / Sign up

Export Citation Format

Share Document