On Maxwell's equations in non-stationary media

Author(s):  
I Vorgul

Maxwell's equations formulated for media with gradually changing conductivity are reduced to Volterra integral equations. Analytical and numerical investigations of the equations are presented for the case of gradual splash-like change in conductivity. Splash-like change in medium parameters can model any discharge phenomena, growing plasma, charge injection, etc. Exact analytical solution for the resolvent is presented and different field behaviours are analysed for the incident field as a plane wave and as an impulse.

Author(s):  
Subhi Abdalazim Aljily Osman ◽  

Maxwell’s equations describe electromagnetic Phenomena. This includes micro- , radio and radar waves .The Maxwell equations are discussed in more detail Faraday's and Amperes laws constitute a first - order hyperbolic system of equations .Matlab is one of the most famous mathematical programs in calculating mathematical problems .The aims of this study is to calculate Maxwell’s equations using Matlab .We followed the applied mathematical method by using Matlab .We found that the solution of Matlab is more accuracy and speed than the analytical solution.


2003 ◽  
Vol 31 (3) ◽  
pp. 272-283 ◽  
Author(s):  
P. D. Ledger ◽  
K. Morgan ◽  
O. Hassan ◽  
N. P. Weatherill

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Muhammad Akbar ◽  
Rashid Nawaz ◽  
Sumbal Ahsan ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar

In this work, a reliable technique is used for the solution of a system of Volterra integral equations (VIEs), called optimal homotopy asymptotic method (OHAM). The proposed technique is successfully applied for the solution of different problems, and comparison is made with the relaxed Monto Carlo method (RMCM) and hat basis function method (HBFM). The comparisons show that the present technique is more suitable and reliable for the solution of a system of VIEs. The presented technique uses auxiliary function containing auxiliary constants, which control the convergence. Moreover, OHAM does not require discretization like other numerical methods and is also free from small or large parameter.


Author(s):  
H. P. Künzle

AbstractIt is shown that Huygens's principle holds for the solutions of Maxwell's equations for p-forms of all degrees in a gravitational plane wave space, while the solutions of the wave equation for 1, 2, and 3-forms, however, may have tails.


2016 ◽  
Vol 33 (4) ◽  
pp. 610 ◽  
Author(s):  
Maxim Pisarenco ◽  
Richard Quintanilha ◽  
Mark G. M. M. van Kraaij ◽  
Wim M. J. Coene

2000 ◽  
Vol 61 (3) ◽  
pp. 3264-3266 ◽  
Author(s):  
Haijun Yuan ◽  
Weinan E ◽  
Peter Palffy-Muhoray

Sign in / Sign up

Export Citation Format

Share Document