scholarly journals Mechanical properties of micro- and nanocrystalline diamond foils

Author(s):  
M. A. Lodes ◽  
F. S. Kachold ◽  
S. M. Rosiwal

Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions.

Growth of diamond at conditions where it is the metastable phase can be achieved by various chemical vapour deposition methods. Atomic hydrogen plays a major role in mediating rates and in maintaining a proper surface for growth. Low molecular weight hydrocarbon species (e.g. CH 3 and C 2 H x are believed to be responsible for extension of the diamond lattice, but complete understanding of attachment mechanisms has not yet been achieved. The nucleation of diamond crystals directly from the gas phase can proceed through a graphitic intermediate. Once formed, the growth rate of diamond crystals is enhanced by the influence of stacking errors. Many of the commonly observed morphologies, e.g. hexagonal platelets and (apparent) decahedral and icosahedral crystals, can be explained by the influence of simple stacking errors on growth rates. In situ measurements of growth rates as a function of hydrocarbon concentration show that the mechanism for diamond growth is complex and may involve surface adsorption processes in rate limiting steps. The transport régime in diamond deposition reactors varies widely. In the hot-filament and microwave reactors, which operate from 20 to 100 Torr (1 Torr ≈ 133 Pa), the transport of mass and energy is dominated by molecular diffusion. In the atmospheric pressure combustion and plasma methods, transport is dominated by convection. In situ measurements of H atom recombination rates in hot-filament reactors show that, under many commonly used process conditions, transport of atomic hydrogen to the growing surface is diffusion limited and H atom recombination is a major contributor to energy transport.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87607-87615 ◽  
Author(s):  
B. B. Wang ◽  
D. Gao ◽  
I. Levchenko ◽  
K. Ostrikov ◽  
M. Keidar ◽  
...  

A simple and efficient method for synthesizing complex graphene-inspired BNCO nanoflakes by plasma-enhanced hot filament chemical vapour deposition using B4C as a precursor and N2/H2 reactive gases is reported.


2001 ◽  
Vol 18 (2) ◽  
pp. 286-288 ◽  
Author(s):  
Zhang Yu-Feng ◽  
Zhang Fan ◽  
Gao Qiao-Jun ◽  
Yu Da-Peng ◽  
Peng Xiao-Fu ◽  
...  

1993 ◽  
Vol 2 (2-4) ◽  
pp. 476-480
Author(s):  
Zhenwu Xuan ◽  
Peichun Yang ◽  
Xin Pu ◽  
Erkai Liu ◽  
Lichang Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document