Systematic study of precursor effects on structure and oxygen reduction reaction activity of FeNC catalysts

Author(s):  
Pascal Theis ◽  
W. David Z. Wallace ◽  
Lingmei Ni ◽  
Markus Kübler ◽  
Annika Schlander ◽  
...  

In this work, the effect of porphyrin loading and template size is varied systematically to study its impact on the oxygen reduction reaction (ORR) activity and selectivity as followed by rotating ring disc electrode experiments in both acidic and alkaline electrolytes. The structural composition and morphology are investigated by 57 Fe Mössbauer spectroscopy, transmission electron microscopy, Raman spectroscopy and Brunauer–Emmett–Teller analysis. It is shown that with decreasing template size, specifically the ORR performance towards fuel cell application gets improved, while at constant area loading of the iron precursor (here expressed in number of porphyrin layers), the iron signature does not change much. Moreover, it is well illustrated that too large area loadings result in the formation of undesired side phases that also cause a decrease in the performance, specifically in acidic electrolyte. Thus, if the impact of morphology is the focus of research it is important to consider the area loading rather than its weight loading. At constant weight loading, beside morphology the structural composition can also change and impact the catalytic performance. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 955 ◽  
Author(s):  
Jing Liu ◽  
Jiao Yin ◽  
Bo Feng ◽  
Tao Xu ◽  
Fu Wang

The Pt particles within diameters of 1–3 nm known as Pt nanoclusters (NCs) are widely considered to be satisfactory oxygen reduction reaction (ORR) catalysts due to higher electrocatalytic performance and cost effectiveness. However, the utilization of such smaller Pt NCs is always limited by the synthesis strategies, stability and methanol tolerance of Pt. Herein, unprotected Pt NCs (~2.2 nm) dispersed on carbon nanotubes (CNTs) were prepared via a modified top-down approach using liquid Li as a solvent to break down the bulk Pt. Compared with the commercial Pt/C, the resultant Pt NCs/CNTs catalyst (Pt loading: 10 wt.%) exhibited more desirable ORR catalytic performance in 0.1 M HClO4. The specific activity (SA) and mass activity (MA) at 0.9 V for ORR over Pt NCs/CNTs were 2.5 and 3.2 times higher than those over the commercial Pt/C (Pt loading: 20 wt.%). Meanwhile, the Pt NCs/CNTs catalyst demonstrated more satisfactory stability and methanol tolerance. Compared with the obvious loss (~69%) of commercial Pt/C, only a slight current decrease (~10%) was observed for Pt NCs/CNTs after the chronoamperometric measurement for 2 × 104 s. Hence, the as-prepared Pt NCs/CNTs material displays great potential as a practical ORR catalyst.


ACS Catalysis ◽  
2013 ◽  
Vol 3 (6) ◽  
pp. 1263-1271 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Yizhong Lu ◽  
Xiangyu Lv ◽  
Dongxue Han ◽  
Qixian Zhang ◽  
...  

2019 ◽  
Vol 7 (27) ◽  
pp. 16508-16515 ◽  
Author(s):  
Guanying Ye ◽  
Qian He ◽  
Suqin Liu ◽  
Kuangmin Zhao ◽  
Yuke Su ◽  
...  

Atomically dispersed iron doped-MOF-derived carbon with high iron loading and nitrogen content for the oxygen reduction reaction via a cage-confinement strategy shows excellent catalytic performance.


2013 ◽  
Vol 15 (21) ◽  
pp. 8058 ◽  
Author(s):  
Ioannis Katsounaros ◽  
Wolfgang B. Schneider ◽  
Josef C. Meier ◽  
Udo Benedikt ◽  
P. Ulrich Biedermann ◽  
...  

Nano Energy ◽  
2016 ◽  
Vol 20 ◽  
pp. 134-143 ◽  
Author(s):  
Li An ◽  
Huijun Yan ◽  
Xin Chen ◽  
Biao Li ◽  
Zhonghong Xia ◽  
...  

ChemCatChem ◽  
2015 ◽  
Vol 7 (18) ◽  
pp. 2937-2944 ◽  
Author(s):  
Shiping Wang ◽  
Minglei Zhu ◽  
Xiaobing Bao ◽  
Jing Wang ◽  
Chunhong Chen ◽  
...  

2016 ◽  
Vol 4 (22) ◽  
pp. 8803-8811 ◽  
Author(s):  
Tao Fu ◽  
Jun Fang ◽  
Chunsheng Wang ◽  
Jinbao Zhao

Novel hollow porous Ag–Pt bimetallic nanoparticles with better ORR catalytic performance than commercial Pt/C and Ag@Pt nanoparticles.


2021 ◽  
Author(s):  
Quanchen Feng ◽  
Xingli Wang ◽  
Malte Klingenhof ◽  
Marc Heggen ◽  
Peter Strasser

Abstract Carbon-supported platinum-nickel (Pt-Ni) alloy nanoparticles (NPs) emerge as the electrocatalysts of choice for deployment in polymer electrolyte membrane fuel cell (PEMFC) cathodes. To date, viable PtNi nanoalloy catalysts are characterized by large Pt weight loading of up to 50 wt%. To a large extent, their preparation processes often involve the use of expensive or even hazardous organometallic metal precursors, solvents and capping agents, substantially limiting their synthetic scalability and sustainability. Here, we report a novel synthetic strategy toward highly active low-Pt loaded PtNi nanoalloy Oxygen Reduction Reaction (ORR) catalysts. The synthesis involves the Pyrolysis and Leaching of Ni-organic polymers, subsequent Pt nanoparticle Deposition followed by thermal Alloying (referred to as PLDA) to prepare single Ni atom site (NiNC)-supported bimetallic PtNi nanoalloy electrocatalysts with very low Pt weight contents of 3–5 wt% Pt loading. We demonstrate that despite this low Pt weight loading, the catalysts exhibit more favorable Pt-mass activities compared to conventional, carbon-supported 20–30 wt%Pt Pt-loaded benchmark PtNi alloy catalysts. Using in situ transmission electron microscopy, cyclic voltammetry, and surface CO stripping techniques, we track and unravel the key stages of the formation process of the PtNi nanoparticle catalysts directly at the atomic scale. By carefully chosen reference experiments, we find that carbon-encapsulated Ni NPs, rather than NiNx single sites, serve exclusively as the Ni atom source for PtNi alloy formation during thermal treatments. Our materials concepts offer a pathway to further decrease the overall Pt content of PEM fuel cell devices.


Sign in / Sign up

Export Citation Format

Share Document