scholarly journals Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter

Author(s):  
Leonardo Badurina ◽  
Oliver Buchmueller ◽  
John Ellis ◽  
Marek Lewicki ◽  
Christopher McCabe ◽  
...  

We survey the prospective sensitivities of terrestrial and space-borne atom interferometers to gravitational waves generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravitational gradient noise in terrestrial detectors, and also binary pulsar and asteroid backgrounds in space-borne detectors. We compare the sensitivities of LIGO and LISA with those of the 100 m and 1 km stages of the AION terrestrial AI project, as well as two options for the proposed AEDGE AI space mission with cold atom clouds either inside or outside the spacecraft, considering as possible sources the mergers of black holes and neutron stars, supernovae, phase transitions in the early Universe, cosmic strings and quantum fluctuations in the early Universe that could have generated primordial black holes. We also review the capabilities of AION and AEDGE for detecting coherent waves of ultralight scalar dark matter. AION-REPORT/2021-04 KCL-PH-TH/2021-61, CERN-TH-2021-116 This article is part of the theme issue ‘Quantum technologies in particle physics’.

2020 ◽  
Vol 492 (4) ◽  
pp. 5247-5260 ◽  
Author(s):  
Jakob Stegmann ◽  
Pedro R Capelo ◽  
Elisa Bortolas ◽  
Lucio Mayer

ABSTRACT Soon after the recent first ever detection of gravitational waves from merging black holes it has been suggested that their origin is primordial. Appealingly, a sufficient number of primordial black holes (PBHs) could also partially or entirely constitute the dark matter (DM) in our Universe. However, recent studies on PBHs in ultra-faint dwarf galaxies (UFDGs) suggest that they would dynamically heat up the stellar component due to two-body relaxation processes. From the comparison with the observed stellar velocity dispersions and the stellar half-light radii, it was claimed that only PBHs with masses $\lesssim 10\, {\rm M}_\odot$ can significantly contribute to the DM. In this work, we improve the latter constraints by considering the largest observational sample of UFDGs and by allowing the PBH masses to follow an extended (lognormal) distribution. By means of collisional Fokker–Planck simulations, we explore a wide parameter space of UFDGs containing PBHs. The analysis of the half-light radii and velocity dispersions resulting from the simulations leads to three general findings that exclude PBHs with masses $\sim \mathcal {O}(1\operatorname{-}100)\, {\rm M}_\odot {}$ from constituting all of the DM: (i) we identify a critical sub-sample of UFDGs that only allows for $\sim \mathcal {O}(1)\, {\rm M}_\odot$ PBH masses; (ii) for any PBH mass, there is an UFDG in our sample that disfavours it; (iii) the spatial extensions of a majority of simulated UFDGs containing PBHs are too large to match the observed.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Anirudh Gundhi ◽  
Christian F. Steinwachs

AbstractWe propose an extension of the scalaron-Higgs model by a non-minimal coupling of the Standard Model Higgs boson to the quadratic Ricci scalar resulting in a Higgs-dependent scalaron mass. The model predicts a successful stage of effective single-field Starobinsky inflation. It features a multi-field amplification mechanism leading to a peak in the inflationary power spectrum at small wavelengths which enhances the production of primordial black holes. The extended scalaron-Higgs model unifies inflationary cosmology with elementary particle physics and explains the origin of cold dark matter in terms of primordial black holes without assuming any new particles.


2020 ◽  
Vol 2020 (07) ◽  
pp. 025-025 ◽  
Author(s):  
Guillermo Ballesteros ◽  
Julián Rey ◽  
Marco Taoso ◽  
Alfredo Urbano

2015 ◽  
Vol 24 (13) ◽  
pp. 1545002 ◽  
Author(s):  
Irina Dymnikova ◽  
Maxim Khlopov

We address the question of regular primordial black holes with de Sitter interior, their remnants and gravitational vacuum solitons G-lumps as heavy dark matter candidates providing signatures for inhomogeneity of early universe, which is severely constrained by the condition that the contribution of these objects in the modern density does not exceed the total density of dark matter. Primordial black holes and their remnants seem to be most elusive among dark matter candidates. However, we reveal a nontrivial property of compact objects with de Sitter interior to induce proton decay or decay of neutrons in neutron stars. The point is that they can form graviatoms, binding electrically charged particles. Their observational signatures as dark matter candidates provide also signatures for inhomogeneity of the early universe. In graviatoms, the cross-section of the induced proton decay is strongly enhanced, what provides the possibility of their experimental searches. We predict proton decay paths induced by graviatoms in the matter as an observational signature for heavy dark matter searches at the IceCUBE experiment.


2021 ◽  
Vol 814 ◽  
pp. 136069
Author(s):  
Yermek Aldabergenov ◽  
Andrea Addazi ◽  
Sergei V. Ketov

2021 ◽  
pp. 100836
Author(s):  
Andrew L. Miller ◽  
Sébastien Clesse ◽  
Federico De Lillo ◽  
Giacomo Bruno ◽  
Antoine Depasse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document