scholarly journals Hydrodynamic image formation by the peripheral lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi

2000 ◽  
Vol 355 (1401) ◽  
pp. 1111-1114 ◽  
Author(s):  
Sheryl Coombs ◽  
James J. Finneran ◽  
Ruth A. Conley

Lake Michigan mottled sculpin ( Cottus bairdi ) have a lateral–line–mediated prey–capture behaviour that consists of an initial orientation towards the prey, a sequence of approach movements, and a final strike at the prey. This unconditioned behaviour can be elicited from blinded sculpin in the laboratory by both real and artificial (vibrating sphere) prey. In order to visualize what Lake Michigan mottled sculpin might perceive through their lateral line when approaching prey, we have combined anatomical, neurophysiological, behavioural and computational modelling techniques to produce three–dimensional maps of how excitation patterns along the lateral line sensory surface change as sculpin approach a vibrating sphere. Changes in the excitation patterns and the information they contain about source location are consistent with behavioural performance, including the approach pathways taken by sculpin to the sphere, the maximum distances at which approaches can be elicited, distances from which strikes are launched, and strike success. Information content is generally higher for laterally located sources than for frontally located sources and this may explain exceptional performance (e.g. successful strikes from unusually long distances) in response to lateral sources and poor performance (e.g. unsuccessful strikes) to frontal sources.

Author(s):  
W.R. Jones ◽  
S. Coombs ◽  
J. Janssen

The lateral line system of the mottled sculpin, like that of most bony fish, has both canal (CNM) and superficial (SNM) sensory end organs, neuromasts, which are distributed on the head and trunk in discrete, readily identifiable groupings (Fig. 1). CNM and SNM differ grossly in location and in overall size and shape. The former are located in subdermal canals and are larger and asymmetric in shape, The latter are located directly on the surface of the skin and are much smaller and more symmetrical It has been suggested that the two may differ at a more fundamental level in such functionally related parameters as extent of myelination of innervating fibers and the absence of efferent innervation in SNM. The present study addresses the validity of these last two features as distinguishing criteria by examining the structure of those SNM populations indicated in Fig. 1 at both the light and electron microscopic levels.All of the populations of SNM examined conform in general to previously published descriptions, consisting of a neuroepithelium composed of sensory hair cells, support cells and mantle cells, Several significant differences from these accounts have, however, emerged. Firstly, the structural composition of the innervating fibers is heterogeneous with respect to the extent of myelination. All SNM groups, with the possible exception of the TRrs and CFLs, possess both myelinated and unmyelinated fibers within the neuroepithelium proper (Fig. 2), just as do CNM. The extent of myelina- tion is quite variable, with some fibers sheath terminating just before crossing the neuroepithelial basal lamina, some just after and a few retaining their myelination all the way to the base of the hair cells in the upper third of the neuroepithelium. Secondly, all SNMs possess fibers that may, on the basis of ultrastructural criteria, be identified as efferent. Such fibers contained numerous cytoplasmic vesicles, both clear and with dense cores. In regions where such fibers closely apposed hair cells, subsynaptic cisternae were observed in the hair cell (Fig. 3).


2014 ◽  
Vol 11 (99) ◽  
pp. 20140467 ◽  
Author(s):  
L. D. Chambers ◽  
O. Akanyeti ◽  
R. Venturelli ◽  
J. Ježov ◽  
J. Brown ◽  
...  

For underwater vehicles to successfully detect and navigate turbulent flows, sensing the fluid interactions that occur is required. Fish possess a unique sensory organ called the lateral line. Sensory units called neuromasts are distributed over their body, and provide fish with flow-related information. In this study, a three-dimensional fish-shaped head, instrumented with pressure sensors, was used to investigate the pressure signals for relevant hydrodynamic stimuli to an artificial lateral line system. Unsteady wakes were sensed with the objective to detect the edges of the hydrodynamic trail and then explore and characterize the periodicity of the vorticity. The investigated wakes (Kármán vortex streets) were formed behind a range of cylinder diameter sizes (2.5, 4.5 and 10 cm) and flow velocities (9.9, 19.6 and 26.1 cm s −1 ). Results highlight that moving in the flow is advantageous to characterize the flow environment when compared with static analysis. The pressure difference from foremost to side sensors in the frontal plane provides us a useful measure of transition from steady to unsteady flow. The vortex shedding frequency (VSF) and its magnitude can be used to differentiate the source size and flow speed. Moreover, the distribution of the sensing array vertically as well as the laterally allows the Kármán vortex paired vortices to be detected in the pressure signal as twice the VSF.


1994 ◽  
Vol 197 (1) ◽  
pp. 399-403
Author(s):  
Y Mukai ◽  
H Yoshikawa ◽  
H Kobayashi

Free mechanosensory neuromasts of larval fishes have been described as playing a complementary role to vision in feeding behaviour (Disler, 1971; Iwai, 1972a,b). In certain species or under limited conditions, free neuromasts play a major role in detecting prey. The larvae of mottled sculpin Cottus bairdi can feed on Artemia in the dark by using free neuromasts (Jones and Janssen, 1992). Artificially blinded surface-feeding Aplocheilus lineatus can detect insects on the water surface by means of free neuromasts (Muller and Schwarts, 1982; Tittel et al. 1984; Bleckmann, 1988; Bleckmann et al. 1989). Furthermore, vibrations produced by swimming crustaceans are known to be a potent natural stimulus for the lateral line system in the Antarctic fish Pagothenia borchgrevinki (Montgomery and Macdonald, 1987; Montgomery, 1989). We found that larvae of a plankton feeder, the willow shiner Gnathopogon elongatus caerulescens (Sauvage) (Cypriniformes, Cyprinidae), fed on nauplii of Artemia in complete darkness. Ototoxic compounds, such as streptomycin, have been shown to disturb the function of the lateral line organ or free neuromasts (Kaus, 1987; Blaxter and Fuiman, 1989; Janssen, 1990; Jones and Janssen, 1992). Willow shiner larvae treated with streptomycin sulphate no longer feed on Artemia in the dark (Y. Mukai, in preparation). The willow shiner inhabits calm lakes and feeds on zooplanktonic prey (Nakamura, 1949). The larvae show a high sensitivity to minute water displacements. From these observations and from our findings, it appears that larval willow shiner must feed on zooplankton by using free neuromasts in the dark. In larval willow shiner, the vane-like cupulae of the free neuromasts protrude from the body surface and the long cupulae are 100-250 microm in length (Mukai and Kobayashi, 1991). The prey is detected by the free neuromasts as a result of a slight bending of the cupula in response to local water movements. The shape of the cupula, especially its length, must therefore be related to the sensitivity of the free neuromast, as inferred from the results of Coombs and Janssen (1989) and van Netten and Kroese (1989).


Sign in / Sign up

Export Citation Format

Share Document