THE RELATIONSHIP BETWEEN THE LENGTH OF THE CUPULAE OF FREE NEUROMASTS AND FEEDING ABILITY IN LARVAE OF THE WILLOW SHINER GNATHOPOGON ELONGATUS CAERULESCENS (TELEOSTEI, CYPRINIDAE)

1994 ◽  
Vol 197 (1) ◽  
pp. 399-403
Author(s):  
Y Mukai ◽  
H Yoshikawa ◽  
H Kobayashi

Free mechanosensory neuromasts of larval fishes have been described as playing a complementary role to vision in feeding behaviour (Disler, 1971; Iwai, 1972a,b). In certain species or under limited conditions, free neuromasts play a major role in detecting prey. The larvae of mottled sculpin Cottus bairdi can feed on Artemia in the dark by using free neuromasts (Jones and Janssen, 1992). Artificially blinded surface-feeding Aplocheilus lineatus can detect insects on the water surface by means of free neuromasts (Muller and Schwarts, 1982; Tittel et al. 1984; Bleckmann, 1988; Bleckmann et al. 1989). Furthermore, vibrations produced by swimming crustaceans are known to be a potent natural stimulus for the lateral line system in the Antarctic fish Pagothenia borchgrevinki (Montgomery and Macdonald, 1987; Montgomery, 1989). We found that larvae of a plankton feeder, the willow shiner Gnathopogon elongatus caerulescens (Sauvage) (Cypriniformes, Cyprinidae), fed on nauplii of Artemia in complete darkness. Ototoxic compounds, such as streptomycin, have been shown to disturb the function of the lateral line organ or free neuromasts (Kaus, 1987; Blaxter and Fuiman, 1989; Janssen, 1990; Jones and Janssen, 1992). Willow shiner larvae treated with streptomycin sulphate no longer feed on Artemia in the dark (Y. Mukai, in preparation). The willow shiner inhabits calm lakes and feeds on zooplanktonic prey (Nakamura, 1949). The larvae show a high sensitivity to minute water displacements. From these observations and from our findings, it appears that larval willow shiner must feed on zooplankton by using free neuromasts in the dark. In larval willow shiner, the vane-like cupulae of the free neuromasts protrude from the body surface and the long cupulae are 100-250 microm in length (Mukai and Kobayashi, 1991). The prey is detected by the free neuromasts as a result of a slight bending of the cupula in response to local water movements. The shape of the cupula, especially its length, must therefore be related to the sensitivity of the free neuromast, as inferred from the results of Coombs and Janssen (1989) and van Netten and Kroese (1989).

2009 ◽  
Vol 5 (4) ◽  
pp. 477-479 ◽  
Author(s):  
M.J. McHenry ◽  
K.E. Feitl ◽  
J.A. Strother ◽  
W.J. Van Trump

Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator's strike. Using a novel device, the impulse chamber, zebrafish ( Danio rerio ) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (mode=13–15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes.


2014 ◽  
Vol 112 (6) ◽  
pp. 1329-1339 ◽  
Author(s):  
Melanie Haehnel-Taguchi ◽  
Otar Akanyeti ◽  
James C. Liao

The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish ( Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior.


2000 ◽  
Vol 355 (1401) ◽  
pp. 1111-1114 ◽  
Author(s):  
Sheryl Coombs ◽  
James J. Finneran ◽  
Ruth A. Conley

Lake Michigan mottled sculpin ( Cottus bairdi ) have a lateral–line–mediated prey–capture behaviour that consists of an initial orientation towards the prey, a sequence of approach movements, and a final strike at the prey. This unconditioned behaviour can be elicited from blinded sculpin in the laboratory by both real and artificial (vibrating sphere) prey. In order to visualize what Lake Michigan mottled sculpin might perceive through their lateral line when approaching prey, we have combined anatomical, neurophysiological, behavioural and computational modelling techniques to produce three–dimensional maps of how excitation patterns along the lateral line sensory surface change as sculpin approach a vibrating sphere. Changes in the excitation patterns and the information they contain about source location are consistent with behavioural performance, including the approach pathways taken by sculpin to the sphere, the maximum distances at which approaches can be elicited, distances from which strikes are launched, and strike success. Information content is generally higher for laterally located sources than for frontally located sources and this may explain exceptional performance (e.g. successful strikes from unusually long distances) in response to lateral sources and poor performance (e.g. unsuccessful strikes) to frontal sources.


1995 ◽  
Vol 198 (12) ◽  
pp. 2581-2591 ◽  
Author(s):  
T G Deliagina ◽  
F Ullén ◽  
M-J. Gonzalez ◽  
H Ehrsson ◽  
G N Orlovsky ◽  
...  

The lateral line system of lampreys includes photoreceptors distributed in the skin of the tail region. These are innervated by the trunk lateral line nerves, and the afferents terminate bilaterally in the medial octavolateral nucleus, crossing the midline through the cerebellar commissure. Stimulation of the dermal photoreceptors by tail illumination initiates locomotion. The present study was performed to characterize the response to illumination in larval and adult lampreys in detail and to elucidate the neuronal pathways responsible for the activation of locomotion. In both larval and adult quiescent lampreys, the response to unilateral illumination of the tail was found to consist of an initial turn followed by rectilinear swimming. The sign and magnitude of the turning angle were not correlated with the laterality of the optic stimulus. In mechanically restrained lampreys, spinalized at the level of segments 15­20, tail illumination evoked a complex motor response in the rostral part of the body, with switches between different patterns of coordination (turns in different directions, locomotion, and turns combined with locomotion). Thus, the response to tail illumination is not a simple reflex, but includes a behavioural choice. Reticulospinal neurones play a crucial role in the initiation of locomotion in lampreys. The response to unilateral tail illumination in rhombencephalic reticular cells was studied with extracellular single-unit recordings. It was found that neurones in the middle and posterior rhombencephalic reticular nuclei were activated bilaterally. Tonic activity or slow bursts (<0.5 Hz) were evoked, in some cases lasting up to 60 s after the stimulation. The response remained bilateral after transection of one lateral line nerve and the cerebellar commissure. Afferents from one side can thus activate reticulospinal cells on both sides through a pathway outside the cerebellar commissure. This bilateral activation of reticulospinal neurones is presumably responsible for the activation of spinal locomotor networks, without any directional bias to the left or the right side, and for the rectilinear swimming observed in behavioural experiments. In the caudal part of the termination area of the lateral line nerve afferents, neurones with contralateral projections were retrogradely stained with horseradish peroxidase. These neurones appear to be likely candidates for mediating the contralateral effects of the lateral line fibres.


Author(s):  
Jennifer D. Liddicoat ◽  
B. L. Roberts

The sense organs of the lateral-line system of lower aquatic vertebrates are mechanoreceptors which respond to water movements. They are distributed over the body, usually in lines which form a definite pattern on the head and along each side of the trunk. In the Cyclostomes the sense organs project from the body surface ('free neuromasts'); in other aquatic vertebrates they are usually housed in canals which are sunk into the dermis and which open at regular intervals to the exterior, although in some teleosts and in all modern amphibia the canal system has been secondarily lost and the neuromasts are once again situated externally.


2010 ◽  
Vol 6 (3) ◽  
pp. 402-405 ◽  
Author(s):  
James C. Liao

The lateral line system of larval zebrafish can translate hydrodynamic signals from the environment to guide body movements. Here, I demonstrate a spatial relationship between the organization of afferent neurons in the lateral line ganglion and the innervation of neuromasts along the body. I developed a whole cell patch clamp recording technique to show that afferents innervate multiple direction-sensitive neuromasts, which are sensitive to low fluid velocities. This work lays the foundation to integrate sensory neuroscience and the hydrodynamics of locomotion in a model genetic system.


Sign in / Sign up

Export Citation Format

Share Document