scholarly journals Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis

2014 ◽  
Vol 369 (1657) ◽  
pp. 20130547 ◽  
Author(s):  
Manuel Viotti ◽  
Ann C. Foley ◽  
Anna-Katerina Hadjantonakis

Despite the importance of the gut and its accessory organs, our understanding of early endoderm development is still incomplete. Traditionally, endoderm has been difficult to study because of its small size and relative fragility. However, recent advances in live cell imaging technologies have dramatically expanded our understanding of this tissue, adding a new appreciation for the complex molecular and morphogenetic processes that mediate gut formation. Several spatially and molecularly distinct subpopulations have been shown to exist within the endoderm before the onset of gastrulation. Here, we review findings that have uncovered complex cell movements within the endodermal layer, before and during gastrulation, leading to the conclusion that cells from primitive endoderm contribute descendants directly to gut.

2019 ◽  
Vol 91 (15) ◽  
pp. 10095-10101 ◽  
Author(s):  
Palanisamy Ravichandiran ◽  
Sivakumar Allur Subramaniyan ◽  
Antony Paulraj Bella ◽  
Princy Merlin Johnson ◽  
Ae Rhan Kim ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


Sign in / Sign up

Export Citation Format

Share Document