scholarly journals Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

2016 ◽  
Vol 371 (1696) ◽  
pp. 20150168 ◽  
Author(s):  
Thomas W. Swetnam ◽  
Joshua Farella ◽  
Christopher I. Roos ◽  
Matthew J. Liebmann ◽  
Donald A. Falk ◽  
...  

Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes. This article is part of the themed issue ‘The interaction of fire and mankind’.

PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0147688 ◽  
Author(s):  
Jens T. Stevens ◽  
Hugh D. Safford ◽  
Malcolm P. North ◽  
Jeremy S. Fried ◽  
Andrew N. Gray ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e87852 ◽  
Author(s):  
Dennis C. Odion ◽  
Chad T. Hanson ◽  
André Arsenault ◽  
William L. Baker ◽  
Dominick A. DellaSala ◽  
...  

2015 ◽  
Vol 42 (9) ◽  
pp. 1736-1749 ◽  
Author(s):  
Ellen Whitman ◽  
Enric Batllori ◽  
Marc-André Parisien ◽  
Carol Miller ◽  
Jonathan D. Coop ◽  
...  

2008 ◽  
Vol 17 (1) ◽  
pp. 84 ◽  
Author(s):  
Jennifer Pierce ◽  
Grant Meyer

Alluvial fan deposits are widespread and preserve millennial-length records of fire. We used these records to examine changes in fire regimes over the last 2000 years in Yellowstone National Park mixed-conifer forests and drier central Idaho ponderosa pine forests. In Idaho, frequent, small, fire-related erosional events occurred within the Little Ice Age (~1450–1800 AD), when greater effective moisture probably promoted grass growth and low-severity fires. This regime is consistent with tree-ring records showing generally wetter conditions and frequent fires before European settlement. At higher elevations in Yellowstone, cool conditions limited overall fire activity. Conversely, both Idaho and Yellowstone experienced a peak in fire-related debris flows between ~950 and 1150 AD. During this generally warmer time, severe multidecadal droughts were interspersed with unusually wet intervals that probably increased forest densities, producing stand-replacing fires. Thus, severe fires are clearly within the natural range of variability in Idaho ponderosa pine forests over longer timescales. Historical records indicate that large burn areas in Idaho correspond with drought intervals within the past 100 years and that burn area has increased markedly since ~1985. Recent stand-replacing fires in ponderosa pine forests are likely related to both changes in management and increasing temperatures and drought severity during the 20th century.


2018 ◽  
Vol 42 (4) ◽  
pp. 478-512 ◽  
Author(s):  
Megan K Walsh ◽  
Haley J Duke ◽  
Kevin C Haydon

In order to fully appreciate the role that fire, both natural and anthropogenic, had in shaping pre-Euro-American settlement landscapes in the Pacific Northwest (PNW), it is necessary to develop a more robust method of evaluating paleofire reconstructions. Here we demonstrate an approach that includes the identification of charcoal morphotypes (i.e. visually distinct charcoal particles), and incorporates both paleoecological and archaeological data sets, to more specifically determine both the nature of past fire regimes (i.e. fuel type and fire severity) and the likely ignition source of those fires. We demonstrate the usefulness of this approach by reconstructing the late Holocene fire and vegetation histories of Lake Oswego (Clackamas County), Oregon, and Fish Lake (Okanogan County), Washington, using macroscopic charcoal and pollen analysis of sediment cores. The histories were compared with climatic records from the PNW as well as archaeological, ethnographic, and historical records from the Lower Columbia River Valley and Southern Columbia Plateau cultural regions. Our results indicate that while centennial-to-millennial-scale climate change had limited influence on the fire regimes at the study sites during the past ∼3800 years, the use of fire by Native Americans for a variety of reasons, particularly after ca. 1200 calendar years before present (AD 750), had a far greater impact. Charcoal morphotype ratios also indicate that fires in the two watersheds were fundamentally different in their severity and impact, and led to major shifts in the forests and woodlands surrounding Lake Oswego, but helped maintain the ponderosa pine-dominated forest at Fish Lake. The elimination of fire from the two study sites during the past 100–300 years is likely the combined result of Euro-American contact and the arrival of disease in the PNW, as well as 20th-century fire suppression and grazing effects on fuel continuity, which has implications for future forest management and restoration efforts in the PNW.


2016 ◽  
Vol 85 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Erin P. Fitch ◽  
Grant A. Meyer

In the Jemez Mountains, tree-ring data indicate that low-severity fires characterized the 400 yr before Euro-American settlement, and that subsequent fire suppression promoted denser forests, recent severe fires, and erosion. Over longer timescales, climate change may alter fire regimes; thus, we used fire-related alluvial deposits to assess the timing of moderate- to high-severity fires, their geomorphic impact, and relation to climate over the last 4000 yr. Fire-related sedimentation does not clearly follow millennial-scale climatic changes, but probability peaks commonly correspond with severe drought, e.g., within the interval 1700–1400 cal yr BP, and ca. 650 and ca. 410 cal yr BP. The latter episodes were preceded by prolonged wet intervals that could promote dense stands. Estimated recurrence intervals for fire-related sedimentation are 250–400 yr. Climatic differences with aspect influenced Holocene post-fire response: fire-related deposits constitute 77% of fan sediments from north-facing basins but only 39% of deposits from drier southerly aspects. With sparser vegetation and exposed bedrock, south aspects can generate runoff and sediment when unburned, whereas soil-mantled north aspects produce minor sediment unless severely burned. Recent channel incision appears unprecedented over the last 2300 yr, suggesting that fuel loading and extreme drought produced an anomalously severe burn in 2002.


Sign in / Sign up

Export Citation Format

Share Document