channel incision
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 21)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Philipp Aigner ◽  
Erik Kuschel ◽  
Christian Zangerl ◽  
Johannes Hübl ◽  
Markus Hrachowitz ◽  
...  

<p>Debris flows (DFs) pose a severe risk to Alpine communities and infrastructure. The Lattenbach catchment (basin area 5,3 km², relief 2134 m) in Tyrol, Austria, is an example for an active DF-site with several DFs occurring per year. To improve our understanding of the DF-process cascade in this catchment, we raise the questions: where does the sediment originate, are hillslope processes the drivers for DF-activity, and how is the relationship of <span><span>rainfall amount</span></span> and DF-magnitude?</p><p>We employ an approach that makes use of the data richness of this study site: High resolution ALS and TLS terrain models and aerial photographs are considered to locate significant elevation differences. Furthermore, we performed an in-detail UAV-based surveying campaign of the active channel reaches for the 2019 and 2020 DF-season. Additionally, we use datasets captured by a DF monitoring station (discharge, volume, timing, precipitation) at the catchment outlet to assess triggering rainfall as well as DF-frequency and magnitudes.</p><p>We find that in the last fifteen years up to three events occurred annually. A single location, where all DFs originate from, is not detectable, indicating a variety of sediment sources is relevant for DF-initiation, including bank failures and channel incision, partly driven by deep-seated landslides that continuously feed the channel with sediment. Between the years 2005 and 2018 the DF-volumes recorded at the catchment outlet varied between about 5.000 m³ (small) and 46.000 m³ (large). A first analysis suggests that there is a prevailing “background noise“ pattern of relatively small DF-events that happen regularly during every DF-season. We hypothesize that rare, very large events represent a tipping point in the catchment system, which leads to a period of increased large-scale DF-activity over following seasons.</p>


2021 ◽  
Author(s):  
Jintang Qin ◽  
Kechang Li ◽  
Jie Chen ◽  
Shenghua Li

<p>The cut-and-fill terrace sequence, resulted from aggradation and incision cycles of alluvial rivers on the piedmont of active orogens, is a common tectonic geomorphological feature observed across different continents under different climatic regimes. Such aggradation and incision cycles are identified on both the orbital and sub-orbital cycles, which poses a question about their origins. Efforts have been put into disentangling the contributions from tectonics, climate and other autogenic sources. In this study, we investigated it by exploring the cut-and-fill terrace sequences along the Jingou River on the northern piedmont of Chinese Tianshan, where numerous terraces are seen along tens of alluvial rivers flowing through the fold-and-thrust belt. More than ten terrace flights, are observed where Jingou River flows across the active Huoerguosi anticline. We collected sediment samples for OSL dating to decipher the building and abandonment processes of these terraces and made topographic measurements to evaluate the paleo-slope of this section of Jingou River. Detailed field survey of sedimentary structure and luminescence dates unambiguously unveil the aggradation and incision cycles on sub-orbital cycles since the last interglacial. Down-cutting of no less than 80 meters is identified during the last ten thousands of years. We tentatively evaluated the possible roles of regional climatic variation, anticline deformation and the autogenic processes. Of all these factors, we detailedly investigated the role of longitudinal contrast of lithologies along the river due to the deformation of the Huoerguosi anticline, which always promotes the channel incision.</p>


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Philip Gathogo Muiruri ◽  
Joy A. Obando ◽  
Ishmail O. Mahiri

Over 40 billion tons of sand is mined worldwide every year which is estimated to be higher than the natural replacement rates. In Kenya, the rate of sand mining is raising concerns over its environmental effects since it is not regulated. This paper presents findings on the geomorphic effects of sand mining in the ephemeral River Tyaa channel in Kitui County. The study adopts the concept of feedback response mechanism of a natural geomorphic system. Through purposive sampling River Tyaa was selected for the study, where rampant sand mining was reportedly taking place. Random sampling on the five sand mining sites identified came up with a representative site namely Kanginga on which systematic sampling was applied while collecting data at both the active and control sites. Data on channel width, depth and slope angles was obtained through physical measurements while data on quantity of sand mined was obtained from Mwingi Sand Mining Cooperative. Multiple logistic regression analysis was used to analyse data whereby the model compared active and control sites. Test results indicated that sand mining had significantly increased river channel’s width (O.R. =1.531), depth (O.R. =1.527) and slope angles (O.R. =1.634) at active mining sites as deduced from the respective Odds Ratios. It concluded that sand mining had altered channel’s morphology resulting to adverse environmental effects such as loss of riparian vegetation and channel incision. It recommended curbing of illegal sand mining through licencing operators and reducing quantity of sand mined by closing some mines. Furthers, it recommended monitoring through regular Environmental Impact Assessment (E.I.A) and Audit (E.A) to inform protection of the river system from degrading.


2020 ◽  
Vol 46 (2) ◽  
pp. 371-393
Author(s):  
J.L. Peña-Monné ◽  
L.A. Longares-Aladrén ◽  
V. Rubio-Fernández ◽  
M.M. Sampietro-Vattuone ◽  
M. Sánchez-Fabre

The lower Gállego River has been strongly degraded since the 1960s due to human activity (gravel mining, dump accumulation, channeling works), which has produced a deep channel incision. Although these human-driven processes are usually reported in fluvial bibliography, in this case, more complex results are observable. For instance, regarding the depth and incision rates, we observed no relationship between the most anthropically impacted areas and the sections with the deepest incisions; moreover, the deepening process continues 40 years after the human interventions ceased. The reason for this maladjustment is the role played by the exhumation of the underlying Pleistocene substrate, affected by the synsedimentary processes of karstification. The appearance of paleodolines filled with fine sediments on the incision bottom and sides is the main factor conditioning the continuity and magnitude of the process. Besides, these paleodepressions direct the river dynamics and course, thus favoring its widening when they appear and causing the development of a new riverbed (Qt13) while the 1960s floodplain (Qt12) is becoming an old terrace located between 5 and 11 m above the new alluvial bottom. There are no previous records about this kind of consequences in the regional fluvial dynamics.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Andrea Lucisano ◽  
Giuseppe Giannaccare ◽  
Marco Pellegrini ◽  
Federico Bernabei ◽  
Angeli Christy Yu ◽  
...  

Purpose. To evaluate the feasibility and the initial outcomes of a novel standardized surgical technique of femtosecond laser- (FSL-) assisted big-bubble deep anterior lamellar keratoplasty (BBDALK) for eyes with keratoconus. Methods. This prospective interventional case series included 11 consecutive FSL-assisted BBDALK procedures performed for the eyes with keratoconus from September 2019 to December 2019. The FSL was used to create (i) an intrastromal channel incision (1.7 mm in length, 4.6 mm in width, 80% depth, and cut energy of 1.70 μJ) and (ii) a 9.0 mm diameter circular lamellar side cut 65 μm above the endothelium (cut energy of 0.90 μJ) intersecting the intrastromal incision. In the operating room, a blunt dissector was used to open the intrastromal channel incision, through which a blunt spatula was inserted, tangentially advanced towards the center of the cornea, and replaced with a blunt cannula for pneumatic dissection. The subsequent surgical steps did not differ from the conventional technique. Main outcome measures were the success rate of pneumatic dissection and the percentage of intraoperative complications. Results. Eleven eyes of 11 patients (6 males and 5 females; mean age: 34.54 ± 13.23 years) underwent FSL-assisted DALK. Using the FSL, both corneal incisions (lamellar side cut and intrastromal channel incision) were successfully created in all cases without the need for repeat docking or additional dissection. Pneumatic dissection with type 1 bubble formation succeeded in all 11 eyes (100%). DALK surgery was completed uneventfully in all cases. Descemet membrane perforation did not occur in any case, and no procedure was converted to penetrating keratoplasty. Conclusion. Using standardized FSL parameters for both incision design and cut energy in BBDALK surgery, pneumatic dissection can be achieved in a very high rate of cases with minimal risk of intraoperative complications.


2020 ◽  
Vol 34 (22) ◽  
pp. 4156-4174
Author(s):  
Steven M. Nelson ◽  
Eloise Kendy ◽  
Karl W. Flessa ◽  
J. Eliana Rodríguez‐Burgueño ◽  
Jorge Ramírez‐Hernández ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 17-24
Author(s):  
Gabriela Ioana-Toroimac ◽  
Liliana Zaharia ◽  
Gianina Neculau ◽  
Gabriel Minea

Despite numerous researches on river channel incision, there are fewer studies on the impact of channel adjustments on floods. This paper aims to investigate channel adjustments and to analyse their impact on the frequency of floods by estimating the return period of the bankfull discharge of the Prahova River in the South-Eastern Subcarpathians (Romania). The study is based on the analysis of the maximum annual discharges and cross-section profiles of the Prahova River at Câmpina gauging station (1976–2015). To estimate the return period of the bankfull discharge, the log Pearson III distribution was used. Overall, the maximum depth and the cross-section area at the bankfull stage increased during the analysed period, indicating channel incision and lateral stability. The bankfull discharge of 1976 could be reached every year and the one of 2015 could occur almost every 5 years. Therefore, due to channel incision and increased channel capacity, overflowing the bankfull stage is a less frequent hazard on the Prahova River at Câmpina gauging station. River management appears to maintain this situation as no measure is taken to decrease channel incision.


Geomorphology ◽  
2020 ◽  
Vol 358 ◽  
pp. 107115 ◽  
Author(s):  
Simon J. Walker ◽  
Scott N. Wilkinson ◽  
Albert I.J.M. van Dijk ◽  
Peter B. Hairsine

Sign in / Sign up

Export Citation Format

Share Document