scholarly journals Monoclonal antibodies identify the NS5 yellow fever virus non-structural protein in the nuclei of infected cells

1992 ◽  
Vol 73 (5) ◽  
pp. 1125-1130 ◽  
Author(s):  
A. Buckley ◽  
S. Gaidamovich ◽  
A. Turchinskaya ◽  
E. A. Gould
Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 802
Author(s):  
Michael B. Yakass ◽  
David Franco ◽  
Osbourne Quaye

Flaviviruses are constantly evolving diverse immune evasion strategies, and the exploitation of the functions of suppressors of cytokine signalling (SOCS) and protein inhibitors of activated STATs (PIAS) to favour virus replication has been described for Dengue and Japanese encephalitis viruses but not for yellow fever virus (YFV), which is still of global importance despite the existence of an effective vaccine. Some mechanisms that YFV employs to evade host immune defence has been reported, but the expression patterns of SOCS and PIAS in infected cells is yet to be determined. Here, we show that SOCS1 is down-regulated early in YFV-infected HeLa and HEK 293T cells, while SOCS3 and SOCS5 are not significantly altered, and PIAS mRNA expression appears to follow a rise-dip pattern akin to circadian-controlled genes. We also demonstrate that YFV evades interferon-β application to produce comparable viral titres. This report provides initial insight into the in vitro expression dynamics of SOCS and PIAS upon YFV infection and a basis for further investigation into SOCS/PIAS expression and how these modulate the immune response in animal models.


2013 ◽  
Vol 176 (1-2) ◽  
pp. 280-284 ◽  
Author(s):  
David W.C. Beasley ◽  
Merribeth Morin ◽  
Ashley R. Lamb ◽  
Edward Hayman ◽  
Douglas M. Watts ◽  
...  

2002 ◽  
Vol 76 (10) ◽  
pp. 4773-4784 ◽  
Author(s):  
Beate M. Kümmerer ◽  
Charles M. Rice

ABSTRACT Little is known about the function of flavivirus nonstructural protein NS2A. Two forms of NS2A are found in yellow fever virus-infected cells. Full-length NS2A (224 amino acids) is the product of cleavage at the NS1/2A and NS2A/2B sites. NS2Aα, a C-terminally truncated form of 190 amino acids, results from partial cleavage by the viral NS2B-3 serine protease at the sequence QK↓T within NS2A. Exchange of serine for lysine at this site (QKT→QST) blocks the production of both NS2Aα and infectious virus. The present study reveals that this defect is not at the level of RNA replication. Despite normal structural region processing, infectious particles containing genome RNA and capsid protein were not released from cells transfected with the mutant RNA. Nevertheless, production of subviral prM/M- and E-containing particles was unimpaired. The NS2A defect could be complemented in trans by providing NS1-2A or NS1-2Aα. However, trans complementation was not observed when the C-terminal lysine of NS1-2Aα was replaced with serine. In addition to true reversions, NS2Aα cleavage site mutations could be suppressed by two classes of second-site changes. The first class consisted of insertions at the NS2Aα cleavage site that restored its basic character and cleavability. A second class of suppressors occurred in the NS3 helicase domain, in which NS3 aspartate 343 was replaced with an uncharged residue (either valine, alanine, or glycine). These mutations in NS3 restored infectious-virus production in the absence of cleavage at the mutant NS2Aα site. Taken together, our results reveal an unexpected role for NS2A and NS3 in the assembly and/or release of infectious flavivirus particles.


Sign in / Sign up

Export Citation Format

Share Document