scholarly journals Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis

1993 ◽  
Vol 74 (1) ◽  
pp. 65-72 ◽  
Author(s):  
H. Perron ◽  
M. Suh ◽  
B. Lalande ◽  
B. Gratacap ◽  
A. Laurent ◽  
...  
2005 ◽  
Vol 79 (13) ◽  
pp. 8348-8360 ◽  
Author(s):  
Danna Hargett ◽  
Tim McLean ◽  
Steven L. Bachenheimer

ABSTRACT We previously reported that herpes simplex virus type 1 (HSV-1) can activate the stress-activated protein kinases (SAPKs) p38 and JNK. In the present study, we undertook a comprehensive and comparative analysis of the requirements for viral protein synthesis in the activation of JNK and p38. Infection with the UL36 mutant tsB7 or with UV-irradiated virus indicated that both JNK and p38 activation required viral gene expression. Cycloheximide reversal or phosphonoacetic acid treatment of wild-type virus-infected cells as well as infection with the ICP4 mutant vi13 indicated that only the immediate-early class of viral proteins were required for SAPK activation. Infection with ICP4, ICP27, or ICP0 mutant viruses indicated that only ICP27 was necessary. Additionally, we determined that in the context of virus infection ICP27 was sufficient for SAPK activation and activation of the p38 targets Mnk1 and MK2 by infecting with mutants deleted for various combinations of immediate-early proteins. Specifically, the d100 (0−/4−) and d103 (4−/22−/47−) mutants activated p38 and JNK, while the d106 (4−/22−/27−/47−) and d107 (4−/27−) mutants did not. Finally, infections with a series of ICP27 mutants demonstrated that the functional domain of ICP27 required for activation was located in the region encompassing amino acids 20 to 65 near the N terminus of the protein and that the C-terminal transactivation activity of ICP27 was not necessary.


2002 ◽  
Vol 76 (6) ◽  
pp. 2780-2788 ◽  
Author(s):  
Jesper Melchjorsen ◽  
Finn S. Pedersen ◽  
Søren C. Mogensen ◽  
Søren R. Paludan

ABSTRACT Recruitment of leukocytes is essential for eventual control of virus infections. Macrophages represent a leukocyte population involved in the first line of defense against many infections, including herpes simplex virus (HSV) infection. Through presentation of antigens to T cells and production of cytokines and chemokines, macrophages also constitute an important link between the innate and adaptive immune systems. Here, we have investigated the chemokine expression profile of macrophages after HSV infection and the virus-cell interactions involved. By reverse transcription-PCR and cDNA arrays, we found that HSV type 1 (HSV-1) and HSV-2 induced expression of the CC chemokine RANTES/CCL5 in murine macrophage cell lines and peritoneal cells. The CXC chemokine BCA-1/CXCL13 was also induced in peritoneal cells. Twenty-six other chemokines tested were not affected. Accumulation of RANTES mRNA was detectable after 5 h of infection, was sensitive to UV irradiation of the virus, and was preceded by accumulation of viral immediate-early mRNA and proteins. The viral components responsible for initiation of RANTES expression were examined with virus mutants and RAW 264.7 macrophage-like cells expressing a dominant negative mutant of the double-stranded-RNA-activated protein kinase (PKR). The PKR mutant cell line displayed reduced constitutive and HSV-inducible RANTES expression compared to the control cell line. HSV-1 mutants deficient in genes encoding the immediate-early proteins ICP4, ICP22, and ICP27 remained fully capable of inducing RANTES expression in macrophages. By contrast, the ability of an ICP0-deficient HSV-1 mutant to induce RANTES expression was compromised. Thus, HSV selectively induces expression of RANTES in macrophages through a mechanism dependent on cellular PKR and viral ICP0.


Sign in / Sign up

Export Citation Format

Share Document