scholarly journals Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins

1993 ◽  
Vol 74 (6) ◽  
pp. 1149-1156 ◽  
Author(s):  
S. I. Malyshenko ◽  
O. A. Kondakova ◽  
Ju. V. Nazarova ◽  
I. B. Kaplan ◽  
M. E. Taliansky ◽  
...  
1998 ◽  
Vol 72 (1) ◽  
pp. 731-738 ◽  
Author(s):  
X. Ares ◽  
G. Calamante ◽  
S. Cabral ◽  
J. Lodge ◽  
P. Hemenway ◽  
...  

ABSTRACT The p24 protein, one of the three proteins implicated in local movement of potato virus X (PVX), was expressed in transgenic tobacco plants (Nicotiana tabacum Xanthi D8 NN). Plants with the highest level of p24 accumulation exhibited a stunted and slightly chlorotic phenotype. These transgenic plants facilitate the cell-to-cell movement of a mutant of PVX that contained a frameshift mutation in p24. Upon inoculation with tobacco mosaic virus (TMV), the size of necrotic local lesions was significantly smaller in p24+ plants than in nontransgenic, control plants. Systemic resistance to tobamoviruses was also evidenced after inoculation of p24+ plants with Ob, a virus that evades the hypersensitive response provided by the N gene. In the latter case, no systemic symptoms were observed, and virus accumulation remained low or undetectable by Western immunoblot analysis and back-inoculation assays. In contrast, no differences were observed in virus accumulation after inoculation with PVX, although more severe symptoms were evident on p24-expressing plants than on control plants. Similarly, infection assays conducted with potato virus Y showed no differences between control and transgenic plants. On the other hand, a considerable delay in virus accumulation and symptom development was observed when transgenic tobacco plants containing the movement protein (MP) of TMV were inoculated with PVX. Finally, a movement defective mutant of TMV was inoculated on p24+ plants or in mixed infections with PVX on nontransgenic plants. Both types of assays failed to produce TMV infections, implying that TMV MP is not interchangeable with the PVX MPs.


2006 ◽  
Vol 19 (8) ◽  
pp. 864-873 ◽  
Author(s):  
Meenu S. Padmanabhan ◽  
Haiymanot Shiferaw ◽  
James N. Culver

Previously, we identified a correlation between the interaction of the Tobacco mosaic virus (TMV) 126/183-kDa replicase with the auxin response regulator indole acetic acid (IAA)26/PAP1 and the development of disease symptoms. In this study, the TMV replicase protein is shown to colocalize with IAA26 in the cytoplasm and prevent its accumulation within the nucleus. Furthermore, two additional auxin (Aux)/IAA family members, IAA27 and IAA18, were found to interact with the TMV replicase and displayed alterations in their cellular localization or accumulation that corresponded with their ability to interact with the TMV replicase. In contrast, the localization and accumulation of noninteracting Aux/IAA proteins were unaffected by the presence of the viral replicase. To investigate the effects of the replicase interaction on Aux/IAA function, transgenic plants expressing a proteolysis-resistant IAA26-P108H-green fluorescent protein (GFP) protein were created. Transgenic plants accumulating IAA26-P108H-GFP displayed an abnormal developmental phenotype that included severe stunting and leaf epinasty. However, TMV infection blocked the nuclear localization of IAA26-P108H-GFP and attenuated the developmental phenotype displayed by the transgenic plants. Combined, these findings suggest that TMV-induced disease symptoms can be attributed, in part, to the ability of the viral replicase protein to disrupt the localization and subsequent function of interacting Aux/IAA proteins.


2006 ◽  
Vol 87 (4) ◽  
pp. 1005-1012 ◽  
Author(s):  
A. A. Bazzini ◽  
S. Asurmendi ◽  
H. E. Hopp ◽  
R. N. Beachy

Replication of Potato virus X (PVX) was reduced in transgenic protoplasts that accumulated wild-type coat protein (CPWT) of Tobacco mosaic virus (TMV) or a mutant CP, CPT42W, that produced highly ordered states of aggregation, including pseudovirions. This reaction is referred to as heterologous CP-mediated resistance. However, protoplasts expressing a CP mutant that abolished aggregation and did not produce pseudovirions, CPT28W, did not reduce PVX replication. Similarly, in transgenic tobacco plants producing TMV CPWT or CPT42W, there was a delay in local cell-to-cell spread of PVX infection that was not observed in CPT28W plants or in non-transgenic plants. The results suggest that the quaternary structure of the TMV CP regulates the mechanism(s) of heterologous CP-mediated resistance. Similarly, transgenic protoplasts that produced PVX CP conferred transient protection against infection by TMV RNA. Transgenic plants that accumulated PVX CP reduced the cell-to-cell spread of infection and resulted in a delay in systemic infection following inoculation with TMV or TMV RNA. Heterologous CP-mediated resistance was characterized by a brief delay in systemic infection, whilst homologous CP-mediated resistance conferred reduced or no systemic infection.


2004 ◽  
Vol 85 (10) ◽  
pp. 3123-3133 ◽  
Author(s):  
Tomas Canto ◽  
Stuart A. MacFarlane ◽  
Peter Palukaitis

Tobacco mosaic virus (TMV) contains a sixth open reading frame (ORF6) that potentially encodes a 4·8 kDa protein. Elimination of ORF6 from TMV attenuated host responses in Nicotiana benthamiana without alteration in virus accumulation. Furthermore, heterologous expression of TMV ORF6 from either potato virus X (PVX) or tobacco rattle virus (TRV) vectors enhanced the virulence of both viruses in N. benthamiana, also without effects on their accumulation. By contrast, the presence or absence of TMV ORF6 had no effect on host response or virus accumulation in N. tabacum plants infected with TMV or PVX. TMV ORF6 also had no effect on the synergism between TMV and PVX in N. tabacum. However, the presence of the TMV ORF6 did have an effect on the pathogenicity of a TRV vector in N. tabacum. In three different types of assay carried out in N. benthamiana plants, expression of TMV ORF6 failed to suppress gene silencing. Expression in N. benthamiana epidermal cells of the encoded 4·8 kDa protein fused to the green fluorescent protein at either end showed, in addition to widespread cytosolic fluorescence, plasmodesmatal targeting specific to both fusion constructs. The role of the ORF6 in host responses is discussed.


2007 ◽  
Vol 82 (5) ◽  
pp. 2477-2485 ◽  
Author(s):  
Meenu S. Padmanabhan ◽  
Sabrina R. Kramer ◽  
Xiao Wang ◽  
James N. Culver

ABSTRACT The replicase protein of Tobacco mosaic virus (TMV) disrupts the localization and stability of interacting auxin/indole acetic acid (Aux/IAA) proteins in Arabidopsis, altering auxin-mediated gene regulation and promoting disease development (M. S. Padmanabhan, S. P. Goregaoker, S. Golem, H. Shiferaw, and J. N. Culver, J. Virol. 79:2549-2558, 2005). In this study, a similar replicase-Aux/IAA interaction affecting disease development was identified in tomato. The ability of the TMV replicase to interact with Aux/IAA proteins from diverse hosts suggests that these interactions contribute to the infection process. To examine the role of this interaction in virus pathogenicity, the replication and spread of a TMV mutant with a reduced ability to interact with specific Aux/IAA proteins were examined. Within young (4- to 6-week-old) leaf tissue, there were no significant differences in the abilities of Aux/IAA-interacting or -noninteracting viruses to replicate and spread. In contrast, in mature (10- to 12-week-old) leaf tissue, the inability to interact with specific Aux/IAA proteins correlated with a significant reduction in virus accumulation. Correspondingly, interacting Aux/IAA levels are significantly higher in older tissue and the overaccumulation of a degradation-resistant Aux/IAA protein reduced virus accumulation in young leaf tissue. Combined, these findings suggest that TMV replicase-Aux/IAA interactions selectively enhance virus pathogenicity in tissues where Aux/IAA proteins accumulate. We speculate that the virus disrupts Aux/IAA functions as a means to reprogram the cellular environment of older cells to one that is more compatible for virus replication and spread.


Sign in / Sign up

Export Citation Format

Share Document