Genome structure of Sagiyama virus and its relatedness to other alphaviruses

Microbiology ◽  
2000 ◽  
Vol 81 (5) ◽  
pp. 1353-1360 ◽  
Author(s):  
Yukio Shirako ◽  
Yuka Yamaguchi

Sagiyama virus (SAG) is a member of the genus Alphavirus in the family Togaviridae, isolated in Japan from mosquitoes in 1956. We determined the complete nucleotide sequence of the SAG genomic RNA from the original stock virus which formed a mixture of plaques with different sizes, and that from a full-length cDNA clone, pSAG2, infectious RNA transcripts from which formed uniform large plaques on BHK-21 cells. The SAG genome was 11698 nt in length exclusive of the 3′ poly(A) tail. Between the complete nucleotide sequences of the full-length cDNA clone, pSAG2, and the consensus sequence from the original stock virus, there were nine amino acid differences; two each in nsP1, nsP2 and E1, and three in E2, some of which may be responsible for plaque phenotypic variants in the original virus stock. SAG was most closely related to Ross River virus among other alphaviruses fully sequenced, with amino acid sequence identities of 86% in the nonstructural proteins and of 83% in the structural proteins. The 3′ terminal 280 nt region of SAG was 82% identical to that of Barmah Forest virus, which was otherwise not closely related to SAG. Comparison of the nucleotide sequence of SAG with partial nucleotide sequences of Getah virus (GET), which was originally isolated in Malaysia in 1955 and is closely related to SAG in serology and in biology, showed near identity between the two viruses, suggesting that SAG is a strain of GET.

1987 ◽  
Vol 15 (16) ◽  
pp. 6740-6740 ◽  
Author(s):  
Hans-Jürgen Schmelzer ◽  
Gerhard Gross ◽  
Georg Widera ◽  
Hubert Mayer

1994 ◽  
Vol 5 (12) ◽  
pp. 1301-1310 ◽  
Author(s):  
S W Clark ◽  
O Staub ◽  
I B Clark ◽  
E L Holzbaur ◽  
B M Paschal ◽  
...  

An examination of human-expressed sequence tags indicated the existence of an isoform of centractin, an actin-related protein localized to microtubule-associated structures. Using one of these tags, we isolated and determined the nucleotide sequence of a full-length cDNA clone. The protein encoded represents the first example of multiple isoforms of an actin-related protein in a single organism. Northern analysis using centractin-specific probes revealed three species of mRNA in HeLa cells that could encode centractin isoforms. One mRNA encodes the previously-identified centractin (now referred to as alpha-centractin). The full-length cDNA clone isolated using the expressed sequence tag encodes a new member of the centractin family, beta-centractin. A probe specific for alpha-centractin hybridized to the third species of mRNA observed (referred to as gamma-centractin). Comparisons of Northern blots of human tissues indicated that alpha-centractin and beta-centractin mRNAs are equally distributed in all populations of mRNA examined, whereas the expression of gamma-centractin appears to be tissue specific. The amino acid sequence of beta-centractin, deduced from the cDNA, indicates a 91% identity with alpha-centractin, increasing to 96% similarity when conservative amino acid changes are taken into account. As antibodies previously raised against alpha-centractin reacted only poorly with beta-centractin, new antibodies were produced and combined with two-dimensional gel electrophoresis to discriminate the two isoforms. Using this system, the subcellular distribution of the alpha- and beta-isoforms were determined. Both isoforms were found predominantly in the cytosolic fraction as a part of a previously identified 20S complex (referred to as the dynactin complex) with no evidence for a free pool of either isoform. The isoforms were found in a constant ratio of approximately 15:1 (alpha:beta) in the dynactin complex.


Virology ◽  
1996 ◽  
Vol 222 (2) ◽  
pp. 464-469 ◽  
Author(s):  
Dennis A. Simpson ◽  
Nancy L. Davis ◽  
Seh-Ching Lin ◽  
Darcy Russell ◽  
Robert E. Johnston

Virology ◽  
1998 ◽  
Vol 241 (1) ◽  
pp. 141-155 ◽  
Author(s):  
Massimo Turina ◽  
Miko Maruoka ◽  
Judit Monis ◽  
A.O. Jackson ◽  
Karen-Beth G. Scholthof

1988 ◽  
Vol 252 (3) ◽  
pp. 633-640 ◽  
Author(s):  
H Kuivaniemi ◽  
G Tromp ◽  
M L Chu ◽  
D J Prockop

A cDNA clone from a human placental library was found to consist of an essentially full-length cDNA of 4.6 kb for the prepro alpha 2(I) chain of type I procollagen. Nucleotide sequencing of the 5′-end of the cDNA provided a sequence of 1617 nucleotide residues and codons for 539 amino acid residues not previously defined. Comparison of the complete structure of the prepro alpha 2(I) cDNA with previously reported sequences for the chicken pro alpha 2(I) gene indicated that 83% of 1366 total amino acid residues were conserved. In the alpha-chain domain 84% of 1014 amino acid residues were conserved. Also, there was conservation of the previously noted preference for U and C in the third position of codons for glycine, proline and alanine. One major difference between the human and the chicken prepro alpha 2(I) chain was that the human chain contained 21 fewer proline residues, an observation that probably explains why the triple helix of human type I procollagen unfolds at temperatures that are 1-2 degrees C lower. In parallel experiments, sequencing of intron-exon boundaries for nine exons of genomic subclones confirmed and extended previous observations that the pro alpha 2(I) gene, like other genes from fibrillar collagens, has an unusual 54-base pattern of exon sizes that is highly conserved through evolution.


1987 ◽  
Vol 9 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Mark L. Tucker ◽  
Mary L. Durbin ◽  
Michael T. Clegg ◽  
Lowell N. Lewis

Sign in / Sign up

Export Citation Format

Share Document