scholarly journals Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000

Microbiology ◽  
2000 ◽  
Vol 146 (10) ◽  
pp. 2447-2456 ◽  
Author(s):  
Alejandro Peñaloza-Vázquez ◽  
Gail M. Preston ◽  
Alan Collmer ◽  
Carol L. Bender
2004 ◽  
Vol 186 (11) ◽  
pp. 3621-3630 ◽  
Author(s):  
Misty D. Wehling ◽  
Ming Guo ◽  
Zheng Qing Fu ◽  
James R. Alfano

ABSTRACT The bacterial plant pathogen Pseudomonas syringae depends on a type III protein secretion system and the effector proteins that it translocates into plant cells to cause disease and to elicit the defense-associated hypersensitive response on resistant plants. The availability of the P. syringae pv. tomato DC3000 genome sequence has resulted in the identification of many novel effectors. We identified the hopPtoV effector gene on the basis of its location next to a candidate type III chaperone (TTC) gene, shcV, and within a pathogenicity island in the DC3000 chromosome. A DC3000 mutant lacking ShcV was unable to secrete detectable amounts of HopPtoV into culture supernatants or translocate HopPtoV into plant cells, based on an assay that tested whether HopPtoV-AvrRpt2 fusions were delivered into plant cells. Coimmunoprecipitation and Saccharomyces cerevisiae two-hybrid experiments showed that ShcV and HopPtoV interact directly with each other. The ShcV binding site was delimited to an N-terminal region of HopPtoV between amino acids 76 and 125 of the 391-residue full-length protein. Our results demonstrate that ShcV is a TTC for the HopPtoV effector. DC3000 overexpressing ShcV and HopPtoV and DC3000 mutants lacking either HopPtoV or both ShcV and HopPtoV were not significantly impaired in disease symptoms or bacterial multiplication in planta, suggesting that HopPtoV plays a subtle role in pathogenesis or that other effectors effectively mask the contribution of HopPtoV in plant pathogenesis.


2005 ◽  
Vol 187 (2) ◽  
pp. 649-663 ◽  
Author(s):  
Tanja Petnicki-Ocwieja ◽  
Karin van Dijk ◽  
James R. Alfano

ABSTRACT Pseudomonas syringae is a gram-negative bacterial plant pathogen that is dependent on a type III protein secretion system (TTSS) and the effector proteins it translocates into plant cells for pathogenicity. The P. syringae TTSS is encoded by hrp-hrc genes that reside in a central region of a pathogenicity island (Pai). Flanking one side of this Pai is the exchangeable effector locus (EEL). We characterized the transcriptional expression of the open reading frames (ORFs) within the EEL of P. syringae pv. tomato DC3000. One of these ORFs, PSPTO1406 (hopB1) is expressed in the same transcriptional unit as hrpK. Both HopB1 and HrpK were secreted in culture and translocated into plant cells via the TTSS. However, the translocation of HrpK required its C-terminal half. HrpK shares low similarity with a putative translocator, HrpF, from Xanthomonas campestris pv. vesicatoria. DC3000 mutants lacking HrpK were significantly reduced in disease symptoms and multiplication in planta, whereas DC3000 hopB1 mutants produced phenotypes similar to the wild type. Additionally, hrpK mutants were reduced in their ability to elicit the hypersensitive response (HR), a programmed cell death associated with plant defense. The reduced HR phenotype exhibited by hrpK mutants was complemented by hrpK expressed in bacteria but not by HrpK transgenically expressed in tobacco, suggesting that HrpK does not function inside plant cells. Further experiments identified a C-terminal transmembrane domain within HrpK that is required for HrpK translocation. Taken together, HopB1 is a type III effector and HrpK plays an important role in the TTSS and is a putative type III translocator.


2006 ◽  
Vol 188 (13) ◽  
pp. 4903-4917 ◽  
Author(s):  
Damien Meyer ◽  
Sébastien Cunnac ◽  
Mareva Guéneron ◽  
Céline Declercq ◽  
Frédérique Van Gijsegem ◽  
...  

ABSTRACT Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia, respectively. They also show similarities with TTSS translocators of the YopB family from animal-pathogenic bacteria. Both popF1 and popF2 belong to the HrpB regulon and are required for the interaction with plants, but PopF1 seems to play a more important role in virulence and hypersensitive response (HR) elicitation than PopF2 under our experimental conditions. PopF1 and PopF2 are not necessary for the secretion of effector proteins, but they are required for the translocation of AvrA avirulence protein into tobacco cells. We conclude that PopF1 and PopF2 are type III translocators belonging to the HrpF/NopX family. The hrpF gene of Xanthomonas campestris pv. campestris partially restored HR-inducing ability to popF1 popF2 mutants of R. solanacearum, suggesting that translocators of R. solanacearum and Xanthomonas are functionally conserved. Finally, R. solanacearum strain UW551, which does not belong to the same phylotype as GMI1000, also possesses two putative translocator proteins. However, although one of these proteins is clearly related to PopF1 and PopF2, the other seems to be different and related to NopX proteins, thus showing that translocators might be variable in R. solanacearum.


2005 ◽  
Vol 187 (12) ◽  
pp. 4086-4094 ◽  
Author(s):  
Sunao Iyoda ◽  
Haruo Watanabe

ABSTRACT Expression of the type III protein secretion system (TTSS), encoded in the locus of enterocyte effacement (LEE) of enterohemorrhagic Escherichia coli (EHEC), has been shown to be controlled by various regulators. In a search for additional regulatory genes, we identified a DNA fragment containing clpX and clpP that has a positive regulatory effect on LEE expression in EHEC O157. The expression of LEE-encoded Esp proteins was significantly reduced in a clpXP deletion mutant. Deletion of grlR, a negative regulatory gene within LEE, markedly increased LEE expression even in the clpXP mutant. To verify the regulatory mechanism of GrlR expression, a chromosomal epitope-tagged allele of grlR (grlR-FLAG) was constructed. GrlR-FLAG expression was increased significantly in the clpXP deletion mutant, suggesting that the GrlR level is under the control of ClpXP, and this regulation is critical for the ClpXP-dependent expression of LEE in EHEC. Deletion of rpoS, the gene encoding a stationary-phase-inducing sigma factor that is a substrate for ClpXP protease, partially restored LEE expression in the clpXP mutant. A multicopy plasmid carrying rpoS strongly repressed expression of Esp proteins, suggesting that positive regulation by ClpXP is partially mediated through a negative effect of RpoS on LEE expression. We also found that rpoS deletion induces transcription of pchA, which encodes one of the positive regulators for LEE expression in EHEC. These results suggest that ClpXP controls expression of LEE through the regulation of RpoS and GrlR levels in EHEC.


Sign in / Sign up

Export Citation Format

Share Document