scholarly journals Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil

2010 ◽  
Vol 60 (2) ◽  
pp. 429-433 ◽  
Author(s):  
Kiran Bala ◽  
Pooja Sharma ◽  
Rup Lal

A yellow-pigmented, hexachlorocyclohexane (HCH)-degrading bacterial strain, P25T, was isolated from an HCH dump site located in the northern part of India. Phylogenetic analysis based on the 16S rRNA gene sequence showed that the strain belongs to the genus Sphingobium, as it showed highest sequence similarity to Sphingobium amiense IAM 15006T (97.7 %). The 16S rRNA gene sequence similarity between strain P25T and members of other species of the genus Sphingobium with validly published names ranged from 94.0 to 97.7 %. The DNA–DNA relatedness between strain P25T and Sphingobium amiense IAM 15006T and other related strains was found be less than 30 %, confirming it to represent a novel species. The DNA G+C content of strain P25T was 65 mol%. The polyamine profile showed the presence of spermidine. The predominant cellular fatty acids were summed feature 8 (18 : 1ω7c and/or 18 : 1ω6c; 48.3 %), 16 : 0 (13.7 %) and 14 : 0 2-OH (8.8 %). The polar lipid profile of strain P25T also corresponded to those reported for sphingomonads (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid), supporting its identification as a member of the family Sphingomonadaceae. The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished strain P25T from closely related members of the genus Sphingobium. Thus, a novel species of the genus Sphingobium is proposed, Sphingobium quisquiliarum sp. nov. The type strain is P25T (=MTCC 9472T =CCM 7543T).

2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3885-3893 ◽  
Author(s):  
Sandra Baumgardt ◽  
Igor Loncaric ◽  
Peter Kämpfer ◽  
Hans-Jürgen Busse

Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3 % similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7 % 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA–DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18 : 1ω9c and C16 : 0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).


2011 ◽  
Vol 61 (4) ◽  
pp. 932-937 ◽  
Author(s):  
Carrie L. Brady ◽  
Teresa Goszczynska ◽  
Stephanus N. Venter ◽  
Ilse Cleenwerck ◽  
Paul De Vos ◽  
...  

Eight yellow-pigmented, Gram-negative, rod-shaped, oxidase-negative, motile, facultatively anaerobic bacteria were isolated from onion seed in South Africa and from an onion plant exhibiting centre rot symptoms in the USA. The isolates were assigned to the genus Pantoea on the basis of phenotypic and biochemical tests. 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA), based on gyrB, rpoB, infB and atpD sequences, confirmed the allocation of the isolates to the genus Pantoea. MLSA further indicated that the isolates represented a novel species, which was phylogenetically most closely related to Pantoea ananatis and Pantoea stewartii. Amplified fragment length polymorphism analysis also placed the isolates into a cluster separate from P. ananatis and P. stewartii. Compared with type strains of species of the genus Pantoea that showed >97 % 16S rRNA gene sequence similarity with strain BD 390T, the isolates exhibited 11–55 % whole-genome DNA–DNA relatedness, which confirmed the classification of the isolates in a novel species. The most useful phenotypic characteristics for the differentiation of the isolates from their closest phylogenetic neighbours are production of acid from amygdalin and utilization of adonitol and sorbitol. A novel species, Pantoea allii sp. nov., is proposed, with type strain BD 390T ( = LMG 24248T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1881-1885 ◽  
Author(s):  
Undine Behrendt ◽  
Andreas Ulrich ◽  
Cathrin Spröer ◽  
Peter Schumann

Three isolates obtained from grass samples were investigated by means of a polyphasic taxonomic study and were shown to represent a novel species within the genus Chryseobacterium. Comparison of 16S rRNA gene sequences and phenotypic features indicated that the three isolates belonged to a single species. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours were Chryseobacterium shigense and Chryseobacterium vrystaatense, which formed a stable cluster with the isolates; this phylogeny was supported by a high bootstrap value and was obtained using different treeing methods. A DNA–DNA hybridization study with the closest neighbour, C. shigense DSM 17126T (98.3 % 16S rRNA gene sequence similarity), clearly demonstrated a separate species status for the grass isolate strain P 456/04T. Comparisons involving physiological properties and whole-cell fatty acid profiles confirmed this result at the phenotypic level. On the basis of these results, strain P 456/04T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium luteum sp. nov. is proposed. The type strain is P 456/04T (=DSM 18605T =LMG 23785T).


2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


2005 ◽  
Vol 55 (1) ◽  
pp. 153-157 ◽  
Author(s):  
Valme Jurado ◽  
Ingrid Groth ◽  
Juan M. Gonzalez ◽  
Leonila Laiz ◽  
Cesareo Saiz-Jimenez

A polyphasic study was carried out to clarify the taxonomic position of two Gram-positive bacteria isolated from soil samples of the Grotta dei Cervi (Italy), a relatively unexplored hypogean environment. The strains, 20-5T and 23-23T, showed phenotypic and phylogenetic characteristics that were consistent with their classification in the genus Agromyces. 16S rRNA gene sequence comparisons revealed that the two strains formed distinct phyletic lines within the genus Agromyces. Based on 16S rRNA gene sequence similarity, chemotaxonomic data and the results of DNA–DNA relatedness studies, it is proposed that the two isolates represent two novel species of the genus Agromyces. Pronounced differences in a broad range of phenotypic characteristics and DNA G+C content distinguished the two strains from each other and from previously described species of the genus Agromyces. Two novel species are proposed: Agromyces salentinus sp. nov. (type strain, 20-5T=HKI 0320T=DSM 16198T=NCIMB 13990T) and Agromyces neolithicus sp. nov. (type strain, 23-23T=HKI 0321T=DSM 16197T=NCIMB 13989T).


2010 ◽  
Vol 60 (9) ◽  
pp. 1999-2005 ◽  
Author(s):  
Katrien De Bruyne ◽  
Nicholas Camu ◽  
Luc De Vuyst ◽  
Peter Vandamme

Two lactic acid bacteria, strains 257T and 252, were isolated from traditional heap fermentations of Ghanaian cocoa beans. 16S rRNA gene sequence analysis of these strains allocated them to the genus Weissella, showing 99.5 % 16S rRNA gene sequence similarity towards Weissella ghanensis LMG 24286T. Whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism fingerprinting of whole genomes and biochemical tests confirmed their unique taxonomic position. DNA–DNA hybridization experiments towards their nearest phylogenetic neighbour demonstrated that the two strains represent a novel species, for which we propose the name Weissella fabaria sp. nov., with strain 257T (=LMG 24289T =DSM 21416T) as the type strain. Additional sequence analysis using pheS gene sequences proved useful for identification of all Weissella–Leuconostoc–Oenococcus species and for the recognition of the novel species.


2007 ◽  
Vol 57 (2) ◽  
pp. 409-413 ◽  
Author(s):  
Yoon-Gon Kim ◽  
Dong Han Choi ◽  
Sangmin Hyun ◽  
Byung Cheol Cho

A halotolerant, facultatively alkaliphilic bacterium, designated CL-MP28T, was isolated from the surface of a sediment core sample collected at a depth of 2247 m in the Ulleung Basin of the East Sea, Korea. Phylogenetic analysis of the 16S rRNA gene sequence of strain CL-MP28T revealed an affiliation with the genus Oceanobacillus. The sequence similarities between the isolate and type strains of members of the genus Oceanobacillus were in the range 95.0–96.0 %, indicating that strain CL-MP28T represented a novel species within the genus. The strain was found to be Gram-positive, rod-shaped and motile by means of peritrichous flagella and was shown to produce ellipsoidal spores. The strain was strictly aerobic and able to grow with NaCl at concentrations in the range 0–14 % (w/v) at pH 7.5. The strain grew at temperatures of 15–42 °C and at pH 6.5–9.5. The major fatty acids were anteiso-C15 : 0 (64.9 %), anteiso-C17 : 0 (11.9 %) and iso-C16 : 0 (7.7 %). The major isoprenoid quinone was MK-7. The DNA G+C content was 40.2 mol%. According to the 16S rRNA gene sequence, DNA–DNA relatedness and physiological data and the fatty acid composition, CL-MP28T could be assigned to the genus Oceanobacillus, but is distinguishable from the recognized species of this genus. Strain CL-MP28T therefore represents a novel species within the genus Oceanobacillus, for which the name Oceanobacillus profundus sp. nov. is proposed. The type strain is CL-MP28T (=KCCM 42318T=DSM 18246T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
Long Jin ◽  
Kwang Kyu Kim ◽  
Sang-Hoon Baek ◽  
Sung-Taik Lee

Two strains, designated B1-1T and B6-8T, were isolated from the Geumho River and the Dalseo Stream in Korea. Comparative 16S rRNA gene sequence analysis showed a clear affiliation of these two bacteria with the class Alphaproteobacteria, their closest relatives being Kaistia adipata KCTC 12095T, Kaistia granuli KCTC 12575T, Kaistia soli KACC 12605T and Kaistia terrae KACC 12910T with 16S rRNA gene sequence similarities of 95.3 –97.7 % to the two novel strains. Strains B1-1T and B6-8T shared a 16S rRNA gene sequence similarity value of 96.1 %. Cells of the two strains were Gram-reaction-negative, aerobic, non-motile, short rods or cocci. The predominant ubiquinone was Q-10. The major fatty acids were C16 : 0, C18 : 1ω7c, C18 : 0 and C19 : 0ω8c cyclo for strain B1-1T and C16 : 0, C18 : 1ω7c, C18 : 0, C18 : 1 2-OH, and C19 : 0ω8c cyclo for strain B6-8T. The G+C contents of the genomic DNA of the strains B1-1T and B6-8T were 61.6 and 66.5 mol%, respectively. Based on the results of this polyphasic study, strains B1-1T ( = KCTC 12849T  = DSM 18799T) and B6-8T ( = KCTC 12850T  = DSM 18800T) represent two novel species of the genus Kaistia, for which the names Kaistia geumhonensis sp. nov. and Kaistia dalseonensis sp. nov. are proposed, respectively.


2010 ◽  
Vol 59 (11) ◽  
pp. 1293-1302 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Moriya Ohkuma

The hsp60 gene sequences were determined for 121 strains of Gram-negative anaerobic rods, including the genera Bacteroides, Barnesiella, Butyricimonas, Odoribacter, Parabacteroides, Paraprevotella, Porphyromonas, Prevotella and Tannerella. The mean pairwise hsp60 gene sequence similarity (73.8–97.1 %) between species in each genus, except for the genus Tannerella that comprises one species, was significantly less than that of the 16S rRNA gene sequence (88.3–96.3 %). Only pairwise hsp60 gene sequence similarity (97.1 %) of the genus Paraprevotella was higher than that of the 16S rRNA gene sequence (93.8 %). Each genus formed a distinct clade in the phylogenetic analysis of the hsp60 gene sequence as well as the 16S rRNA gene sequence. The phylogenetic analysis indicated a higher evolutionary rate for the hsp60 gene sequence than the 16S rRNA gene sequence, especially in the genera Porphyromonas and Prevotella. This study suggests that the hsp60 gene is a useful alternative phylogenetic marker for the identification and classification of a broad range of Gram-negative anaerobic rods.


Author(s):  
Svetlana A. Pecheritsyna ◽  
Elizaveta M. Rivkina ◽  
Vladimir N. Akimov ◽  
Viktoria A. Shcherbakova

A psychrotolerant sulfate-reducing bacterium, designated B15T, was isolated from supercooled water brine from within permafrost of the Varandey Peninsula, on the southern coast of the Barents Sea. Cells were Gram-negative, motile vibrions (3.0–4.0×0.4–0.5 µm) with a single polar flagellum. The isolate was positive for desulfoviridin as a bisulfite reductase. Strain B15T grew at −2 to 28 °C (optimum 24 °C) and with 0–2.0 % NaCl (optimum 0.2 %). The isolate used H2 plus acetate, formate, ethanol, lactate, pyruvate and choline as electron donors and used sulfate, sulfite, thiosulfate, elemental sulfur, DMSO and Fe3+ as electron acceptors. Pyruvate and lactate were not fermented in the absence of sulfate. The G+C content of genomic DNA was 55.2 mol%. Analysis of the 16S rRNA gene sequence showed that the isolate belonged to the genus Desulfovibrio. Its closest relatives were Desulfovibrio idahonensis CY1T (98.8 % 16S rRNA gene sequence similarity) and Desulfovibrio mexicanus Lup1T (96.5 %). On the basis of genotypic, phenotypic and phylogenetic characteristics, the isolate represents a novel species, for which the name Desulfovibrio arcticus sp. nov. is proposed; the type strain is B15T ( = VKM B-2367T = DSM 21064T).


Sign in / Sign up

Export Citation Format

Share Document