scholarly journals Description of Olleya aquimaris sp. nov., isolated from seawater, and emended description of the genus Olleya Mancuso Nichols et al. 2005

2010 ◽  
Vol 60 (4) ◽  
pp. 887-891 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-flagellated, motile (by gliding), yellow-pigmented, rod-shaped bacterial strain, designated L-4T, was isolated from seawater of Baekdo harbour in the East Sea, Korea. Strain L-4T grew optimally at 37 °C, at pH 6.5–7.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain L-4T clustered with Olleya marilimosa CAM030T, a member of the family Flavobacteriaceae. Strain L-4T exhibited 16S rRNA gene sequence similarity values of 97.2 % to O. marilimosa CAM030T and less than 95.8 % to other members of the family Flavobacteriaceae. Strain L-4T and O. marilimosa CIP 108537T contained MK-6 as the predominant menaquinone. The fatty acid and polar lipid profiles of strain L-4T were similar to those of O. marilimosa CIP 108537T. The DNA G+C content of strain L-4T was 35 mol% and DNA–DNA relatedness between strain L-4T and O. marilimosa CIP 108537T was 7 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, enable strain L-4T to be distinguished from O. marilimosa. On the basis of these data, strain L-4T is considered to represent a novel species of the genus Olleya for which the name Olleya aquimaris sp. nov. is proposed; the type strain is L-4T (=KCTC 22661T =CCUG 58074T). An emended description of the genus Olleya is also provided.

2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 539-544 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and rod-shaped bacterial strain, designated HWR-17T, was isolated from seawater of the Yellow Sea in Korea. Strain HWR-17T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HWR-17T clustered with the two Mariniflexile species in the family Flavobacteriaceae, exhibiting 16S rRNA gene sequence similarity of 97.1–97.2 % to their type strains and less than 95.7 % sequence similarity to other members of the family Flavobacteriaceae. Strain HWR-17T contained MK-6 as the predominant menaquinone and iso-C15 : 0 as the major fatty acid. The polar lipid profile of strain HWR-17T contained phosphatidylethanolamine, an unidentified aminolipid and four unidentified lipids. The DNA G+C content of strain HWR-17T was 35.7 mol% and it exhibited 11 and 10 % DNA–DNA relatedness, respectively, with Mariniflexile gromovii KCTC 12570T and Mariniflexile fucanivorans DSM 18792T. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain HWR-17T is distinguishable from the two recognized Mariniflexile species. On the basis of the data presented, strain HWR-17T is considered to represent a novel species of the genus Mariniflexile, for which the name Mariniflexile aquimaris sp. nov. is proposed. The type strain is HWR-17T ( = KCTC 23346T  = CCUG 60529T). An emended description of the genus Mariniflexile is also proposed.


2011 ◽  
Vol 61 (7) ◽  
pp. 1549-1553 ◽  
Author(s):  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming bacterial strain, BDR-9T, was isolated from soil collected from Boryung on the west coast of the Korean peninsula, and its taxonomic position was investigated by using a polyphasic study. Strain BDR-9T grew optimally at 25 °C, at pH 6.0–7.5 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BDR-9T fell within the clade comprising species of the genus Mucilaginibacter within the phylum Bacteroidetes. 16S rRNA gene sequence similarity values between strain BDR-9T and the type strains of species of the genus Mucilaginibacter were in the range 94.0–95.6 %. Strain BDR-9T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 44.3 mol%. Differential phenotypic properties and phylogenetic distinctiveness of strain BDR-9T demonstrated that this strain is distinguishable from species of the genus Mucilaginibacter. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BDR-9T is considered to represent a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter boryungensis sp. nov. is proposed. The type strain is BDR-9T ( = KCTC 23157T  = CCUG 59599T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2587-2591 ◽  
Author(s):  
Young-Ok Kim ◽  
Kyung-Kil Kim ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Jeong-Ho Lee ◽  
...  

A Gram-negative, motile, non-spore-forming and lipolytic bacterial strain, designated Gung47T, was isolated from a tidal flat on the west coast of Korea. Strain Gung47T grew optimally at 30 °C and with 2−5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain Gung47T belonged to the genus Photobacterium. Strain Gung47T exhibited 98.1 % 16S rRNA gene sequence similarity with Photobacterium rosenbergii LMG 22223T and 94.3–96.3 % similarity with other type strains of species of the genus Photobacterium. Strain Gung47T exhibited 47 % DNA–DNA relatedness to P. rosenbergii LMG 22223T. Strain Gung47T contained Q-8 as the predominant ubiquinone and C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C16 : 0 and C18 : 1 ω7c as the major fatty acids. In this study, two closely related type strains, P. rosenbergii LMG 22223T and Photobacterium halotolerans LMG 22194T, were also found to have Q-8 as the predominant ubiquinone. The DNA G+C content of strain Gung47T was 50.6 mol%. The differential phenotypic properties together with the phylogenetic and genetic distinctiveness of strain Gung47T demonstrated that this strain is distinguishable from recognized Photobacterium species. Therefore, strain Gung47T is considered to represent a novel species of the genus Photobacterium, for which the name Photobacterium gaetbulicola sp. nov. is proposed. The type strain is Gung47T (=KCTC 22804T =CCUG 58399T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1363-1367 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Stenotrophomonas-like bacterial strain, DS-16T, was isolated from soil from Dokdo, Korea, and subjected to a polyphasic taxonomic study. Strain DS-16T grew optimally at pH 6.0–7.0 and 30 °C in the presence of 0.5 % (w/v) NaCl. It contained Q-8 as the predominant ubiquinone and iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c as the major fatty acids. The DNA G+C content was 65.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-16T joined the cluster comprising Stenotrophomonas species. The levels of 16S rRNA gene sequence similarity between strain DS-16T and the type strains of Stenotrophomonas species ranged from 95.5 to 97.5 %. DNA–DNA relatedness data and differential phenotypic properties, together with the phylogenetic distinctiveness of strain DS-16T, demonstrated that this novel strain differs from Stenotrophomonas species with validly published names. On the basis of phenotypic, phylogenetic and genetic data, strain DS-16T (=KCTC 12543T=CIP 108839T) should be classified in the genus Stenotrophomonas as a member of a novel species, for which the name Stenotrophomonas dokdonensis sp. nov. is proposed.


2007 ◽  
Vol 57 (11) ◽  
pp. 2493-2497 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Peter Schumann ◽  
Tae-Kwang Oh

A Gram-positive, yellow-pigmented, non-motile and rod-shaped or coccoid bacterial strain, DS-61T, was isolated from soil from Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. The strain grew optimally at pH 6.5–7.5 and 25 °C in the presence of 1.0 % (w/v) NaCl. Strain DS-61T had peptidoglycan of the type based on l-Lys–l-Thr–d-Asp and contained galactose as the only whole-cell sugar. MK-9(H4) was the predominant menaquinone and anteiso-C15 : 0 and iso-C15 : 0 were the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The DNA G+C content was 72.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-61T is most closely affiliated to the genus Cellulosimicrobium, clustering with Cellulosimicrobium cellulans and Cellulosimicrobium funkei. The levels of 16S rRNA gene sequence similarity between strain DS-61T and the type strains of Cellulosimicrobium cellulans and Cellulosimicrobium funkei were 97.4–97.6 %. DNA–DNA relatedness data and differential phenotypic properties demonstrated that strain DS-61T is distinguishable from these two recognized Cellulosimicrobium species. On the basis of phenotypic, phylogenetic and genetic data, strain DS-61T represents a novel species of the genus Cellulosimicrobium, for which the name Cellulosimicrobium terreum sp. nov. is proposed. The type strain is DS-61T (=KCTC 19206T=DSM 18665T). An emended description of the genus is given.


Author(s):  
Jung-Hoon Yoon ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Soo-Jin Oh ◽  
Soon Chul Myung ◽  
...  

A Gram-stain-negative, non-flagellated, non-gliding, yellow-pigmented and rod-shaped bacterial strain, designated GSW-R14T, was isolated from seawater of Geoje Island in the South Sea, Korea. Strain GSW-R14T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GSW-R14T belonged to the genus Flavobacterium, joining Flavobacterium gelidilacus LMG 21477T by a bootstrap resampling value of 100 %. Strain GSW-R14T exhibited 97.6 % 16S rRNA gene sequence similarity to F. gelidilacus LMG 21477T and similarities of 91.2–95.2 % to other members of the genus Flavobacterium. Strain GSW-R14T contained MK-6 as the predominant menaquinone. The fatty acid profile of strain GSW-R14T was similar to that of F. gelidilacus LMG 21477T. The DNA G+C content of strain GSW-R14T was 31.4 mol% and its DNA–DNA relatedness with F. gelidilacus LMG 21477T was 31 %. Strain GSW-R14T could be distinguished from F. gelidilacus and the other species of the genus Flavobacterium by its phylogenetic and genetic distinctiveness and by several phenotypic properties. On the basis of these data, strain GSW-R14T is considered to represent a novel species of the genus Flavobacterium, for which the name Flavobacterium ponti sp. nov. is proposed; the type strain is GSW-R14T (=KCTC 22802T =CCUG 58402T).


2006 ◽  
Vol 56 (4) ◽  
pp. 811-814 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile and oval- or rod-shaped bacterial strain, DS-43T, was isolated from soil from Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. The strain grew optimally at pH 7·0–8·0 and at 30 °C in the presence of 0·5 % (w/v) NaCl. Strain DS-43T had Q-8 as the predominant ubiquinone and C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C18 : 1 ω7c and C17 : 0 cyclo as the major fatty acids, which are consistent with the corresponding data for the type strain (KCTC 12459T) of Variovorax paradoxus. The DNA G+C content was 66·0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-43T was most closely related to Variovorax paradoxus, the only recognized species of the genus. The level of 16S rRNA gene sequence similarity between strain DS-43T and V. paradoxus IAM 12373T was 97·3 %. DNA–DNA relatedness data and differential phenotypic properties demonstrated that strain DS-43T is distinguishable from V. paradoxus. On the basis of phenotypic, phylogenetic and genetic data, it is proposed that strain DS-43T (=KCTC 12544T=CIP 108838T) be classified in the genus Variovorax as a member of a novel species, Variovorax dokdonensis sp. nov.


Author(s):  
Yong-Taek Jung ◽  
Soo-Young Lee ◽  
Won-Chan Choi ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, non-sporulating, non-flagellated rod, designated BR-9T, was isolated from soil collected on the Korean peninsula. Strain BR-9T grew optimally at pH 6.0–7.0, at 30 °C and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BR-9T belonged to the genus Pedobacter and clustered with Pedobacter insulae DS-139T and Pedobacter koreensis WPCB189T. Strain BR-9T exhibited 98.2 and 97.5 % 16S rRNA gene sequence similarity with P. insulae DS-139T and P. koreensis WPCB189T, respectively, and <96.7 % sequence similarity with the type strains of other species in the genus Pedobacter. Strain BR-9T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C content of strain BR-9T was 38.5 mol%. DNA–DNA relatedness between strain BR-9T and P. insulae DS-139T and P. koreensis KCTC 12536T was 3.4–4.2 %, which indicated that the isolate was genetically distinct from these type strains. Strain BR-9T was also distinguishable by differences in phenotypic properties. On the basis of the data presented, strain BR-9T is considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter boryungensis sp. nov. is proposed. The type strain is BR-9T ( = KCTC 23344T  = CCUG 60024T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2908-2912 ◽  
Author(s):  
Young-Ok Kim ◽  
Hee Jeong Kong ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Kyung-Kil Kim ◽  
...  

A Gram-stain-negative, non-motile, non-spore-forming and short rod- or rod-shaped bacterial strain, designated 22-5T, was isolated from a bluespotted cornetfish, Fistularia commersonii, and subjected to taxonomic study. Strain 22-5T grew optimally at 30 °C and in the presence of 2–5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 22-5T belonged to the genus Paracoccus and joined the cluster comprising Paracoccus homiensis DD-R11T and Paracoccus zeaxanthinifaciens ATCC 21588T, with which strain 22-5T exhibited 97.4 and 96.9 % 16S rRNA gene sequence similarity, respectively. Strain 22-5T exhibited 94.0–96.6 % 16S rRNA gene sequence similarity with the other type strains of species of the genus Paracoccus. Strain 22-5T contained Q-10 as the predominant menaquinone and C18 : 1 ω7c as the predominant fatty acid. In this study, P. zeaxanthinifaciens KCTC 22688T also contained Q-10 as the predominant isoprenoid quinone. The DNA G+C content of strain 22-5T was 63.6 mol%. Strain 22-5T exhibited 44 and 32 % DNA–DNA relatedness to P. homiensis KACC 11518T and P. zeaxanthinifaciens KCTC 22688T, respectively. On the basis of phenotypic, phylogenetic and genetic data, strain 22-5T is considered to represent a novel species of the genus Paracoccus, for which the name Paracoccus fistulariae sp. nov. is proposed. The type strain is 22-5T (=KCTC 22803T =CCUG 58401T).


2007 ◽  
Vol 57 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Zhe-Xue Quan ◽  
Kwang Kyu Kim ◽  
Myung-Kyum Kim ◽  
Long Jin ◽  
Sung-Taik Lee

A Gram-negative, non-spore-forming, yellow-pigmented bacterium, strain N4T, was isolated from a nickel-complexed cyanide-degrading bioreactor and subjected to a polyphasic taxonomic study. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain N4T is affiliated to the genus Chryseobacterium of the family Flavobacteriaceae. The levels of 16S rRNA gene sequence similarity between strain N4T and the type strains of all known Chryseobacterium species were 93.2–95.8 %, suggesting that strain N4T represents a novel species within the genus Chryseobacterium. The strain contained iso-C15 : 0 and summed feature 4 as the major fatty acids and menaquinone MK-6 as the predominant respiratory quinone. The G+C content of the genomic DNA was 38.2 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain N4T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium caeni sp. nov. is proposed. The type strain is N4T (=KCTC 12506T=CCBAU 10201T=DSM 17710T).


Sign in / Sign up

Export Citation Format

Share Document