scholarly journals Vagococcus acidifermentans sp. nov., isolated from an acidogenic fermentation bioreactor

2011 ◽  
Vol 61 (5) ◽  
pp. 1123-1126 ◽  
Author(s):  
Liang Wang ◽  
Ying-Shun Cui ◽  
Chang Seob Kwon ◽  
Sung-Taik Lee ◽  
Jung-Sook Lee ◽  
...  

A Gram-staining-positive, coccus-shaped, non-spore-forming, facultatively anaerobic bacterium, designated AC-1T, was isolated from an acidogenic fermentation bioreactor treating food wastewater. On the basis of 16S rRNA gene sequence analysis, strain AC-1T was shown to belong to the genus Vagococcus. The closest phylogenetic relatives were Vagococcus elongatus PPC9T (97.4 % 16S rRNA gene sequence similarity), Vagococcus penaei CD276T (96.7 %) and Vagococcus carniphilus ATCC BAA-640T (96.6 %). The major fatty acids were C18 : 1ω9c (24.8 %) and C16 : 0 (19.5 %) and the G+C content of genomic DNA was 44.2 mol%, which supported the affiliation of strain AC-1T to the genus Vagococcus. Strain AC-1T and V. elongatus DSM 21480T exhibited 11 % DNA–DNA relatedness. Physiological and biochemical tests differentiated strain AC-1T from the type strains of recognized species of the genus Vagococcus. Therefore, strain AC-1T is considered to represent a novel species, for which the name Vagococcus acidifermentans sp. nov. is proposed. The type strain is AC-1T ( = KCTC 13418T  = LMG 24798T).

2007 ◽  
Vol 57 (8) ◽  
pp. 1834-1839 ◽  
Author(s):  
Min-Ho Yoon ◽  
Wan-Taek Im

Two strains (Gsoil 492T and Gsoil 643T) isolated in Pocheon Province, South Korea, from soil used for ginseng cultivation were characterized using a polyphasic approach. Both isolates comprised Gram-negative, aerobic, non-motile, rod-shaped bacteria. They had similar chemotaxonomic characteristics, e.g. containing MK-7 as the major quinone, having a DNA G+C content in the range 42.5–43.3 mol% and possessing iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a tight cluster with several uncultured bacterial clones and with the established genera Terrimonas, Niastella and Chitinophaga in the phylum Bacteroidetes but were clearly separate from these genera. The levels of 16S rRNA gene sequence similarity between the isolates and type strains of related genera ranged from 87.5 to 92.4 %. Furthermore, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from phylogenetically closely related species with validly published names. The level of 16S rRNA gene sequence similarity between the two strains was 99.5 %, whereas the DNA–DNA relatedness value was 44 %, indicating that they represent separate species. On the basis of the polyphasic evidence, a novel genus, Flavisolibacter gen. nov., and two novel species, Flavisolibacter ginsengiterrae sp. nov. (type strain Gsoil 492T=KCTC 12656T=DSM 18136T) and Flavisolibacter ginsengisoli sp. nov. (type strain Gsoil 643T=KCTC 12657T=DSM 18119T), are proposed. Flavisolibacter ginsengiterrae is the type species of the genus.


2005 ◽  
Vol 55 (6) ◽  
pp. 2491-2495 ◽  
Author(s):  
Marta Montero-Barrientos ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
Enrique Monte ◽  
Manuel G. Roig

A Gram-positive, aerobic, long-rod-shaped, non-spore-forming bacterium (strain PPLBT) was isolated from soil mixed with Iberian pig hair. This actinomycete showed keratinase activity in vitro when chicken feathers were added to the culture medium. Strain PPLBT was oxidase-negative and catalase-positive and produced lipase and esterase lipase. This actinomycete grew at 40 °C on nutrient agar and in the same medium containing 5 % (w/v) NaCl. Growth was observed with many different carbohydrates as the sole carbon source. On the basis of 16S rRNA gene sequence similarity, strain PPLBT was shown to belong to the genus Terrabacter of the family Intrasporangiaceae. Strain PPLBT showed 98·8 % 16S rRNA gene sequence similarity to Terrabacter tumescens. Chemotaxonomic data, such as the main ubiquinone (MK-8), the main polar lipids (phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol) and the main fatty acids (i-C15 : 0, ai-C15 : 0, i-C16 : 0 and ai-C17 : 0) supported the affiliation of strain PPLBT to the genus Terrabacter. The G+C content of the DNA was 71 mol%. The results of DNA–DNA hybridization (36·6 % relatedness between Terrabacter tumescens and strain PPLBT) and physiological and biochemical tests suggested that strain PPLBT belongs to a novel species of the genus Terrabacter, for which the name Terrabacter terrae sp. nov. is proposed. The type strain is PPLBT (=CECT 3379T=LMG 22921T).


2007 ◽  
Vol 57 (4) ◽  
pp. 721-724 ◽  
Author(s):  
Peter Kämpfer ◽  
Birgit Huber ◽  
Kathrin Thummes ◽  
Iris Grün-Wollny ◽  
Hans-Jürgen Busse

A Gram-positive bacterium, strain GW8-1761T, was isolated from soil close to the Marmore waterfalls, Terni, Italy. 16S rRNA gene sequence similarity studies showed that strain GW8-1761T belonged to the genus Actinoplanes, being most closely related to Actinoplanes italicus JCM 3165T (98.9 %), A. rectilineatus IFO 13941T (98.5 %), A. palleronii JCM 7626T (97.8 %), A. utahensis IFO 13244T (97.6 %) and A. cyaneus DSM 46137T (97.6 %). Strain GW8-1761T could be distinguished from any other Actinoplanes species with validly published names by 16S rRNA gene sequence similarity values of less than 97.5 %. Chemotaxonomic data [major menaquinone MK-9(H4); major polar lipids diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol, with phosphatidylcholine and aminoglycolipids absent; major fatty acids C15 : 0, C16 : 0, C16 : 0 iso, C17 : 1 ω8c and summed feature 3 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH)] supported the affiliation of strain GW8-1761T to the genus Actinoplanes. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain GW8-1761T from the most closely related species. Strain GW8-1761T therefore merits species status, and we propose the name Actinoplanes couchii sp. nov., with the type strain GW8-1761T (=DSM 45050T=CIP 109316T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2573-2576 ◽  
Author(s):  
Sooyeon Park ◽  
Won-Chan Choi ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, motile, agarolytic bacterium, designated M-M1T, was isolated from marine sand obtained from Geoje Island, South Sea, Korea, and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain M-M1T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. It did not grow in the presence of >7 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain M-M1T fell within the clade comprising members of the genus Thalassomonas, clustering with Thalassomonas agarivorans TMA1T, Thalassomonas loyana CBMAI 722T and Thalassomonas ganghwensis JC2041T, with which it exhibited 16S rRNA gene sequence similarity values of 96.4, 96.0 and 94.9 % respectively. Strain M-M1T exhibited 94.7–95.2 % 16S rRNA gene sequence similarity to the other species of the genus Thalassomonas. Strain M-M1T contained Q-8 as the predominant ubiquinone and C16 : 1ω7c and/or iso-C15 : 0 2-OH, C16 : 0 and C18 : 1ω7c as the major fatty acids. The DNA G+C content was 44.2 mol%. Strain M-M1T could be differentiated from phylogenetically related species of the genus Thalassomonas by differences in some phenotypic properties. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain M-M1T is considered to represent a novel species of the genus Thalassomonas, for which the name Thalassomonas agariperforans sp. nov. is proposed. The type strain is M-M1T ( = KCTC 23343T  = CCUG 60020T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1418-1424 ◽  
Author(s):  
Manuela Filippini ◽  
Andres Kaech ◽  
Urs Ziegler ◽  
Homayoun C. Bagheri

An orange-pigmented, Gram-staining-negative, non-motile, filament-forming, rod-shaped bacterium (BUZ 3T) was isolated from a coastal mud sample from the North Sea (Fedderwardersiel, Germany) and characterized taxonomically using a polyphasic approach. According to 16S rRNA gene sequence data, it belonged to the family Cytophagaceae, exhibiting low 16S rRNA gene sequence similarity (<90 %) with members of the genera Spirosoma, Rudanella and Fibrella. The DNA G+C content was 52.0 mol%. The major fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 1ω5c and iso-C17 : 0 3-OH. The major polar lipids consisted of phosphatidylethanolamine and several aminolipids. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it is proposed that strain BUZ 3T represents a novel genus and species, for which the name Fibrisoma limi gen. nov., sp. nov. is proposed. The type strain is BUZ 3T ( = DSM 22564T  = CCUG 58137T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2187-2192 ◽  
Author(s):  
Munusamy Madhaiyan ◽  
Selvaraj Poonguzhali ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
Subbiah Sundaram

An aerobic, yellow-pigmented, facultatively methylotrophic, Gram-staining-negative, non-spore-forming bacterium, designated strain Gm-149T, was isolated from the rhizosphere of cultivated soybean in India. Cells were motile by gliding. The predominant cellular fatty acids were iso-C15 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C16 : 0 3-OH and anteiso-C15 : 0, and the major isoprenoid quinone was MK-6. The G+C content of the genomic DNA of strain Gm-149T was 35.6 mol%. Comparative 16S rRNA gene sequence analysis showed that strain Gm-149T formed a distinct phyletic line within the genus Flavobacterium. Based on levels of pairwise 16S rRNA gene sequence similarity, strain Gm-149T was related most closely to the type strain of Flavobacterium daejeonense (97.1 %), but the level of DNA–DNA relatedness between these two strains was about 11.2 %. On the basis of phenotypic and genotypic data, strain Gm-149T is considered to represent a novel species of the genus Flavobacterium, for which the name Flavobacterium glycines sp. nov. is proposed. The type strain is Gm-149T (=ICMP 17618T=NBRC 105008T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1989-1993 ◽  
Author(s):  
A. I. Vela ◽  
G. Mentaberre ◽  
I. Marco ◽  
R. Velarde ◽  
S. Lavín ◽  
...  

Biochemical and molecular genetic studies were performed on an unknown Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from clinical samples of a Pyrenean chamois. The micro-organism was identified as a streptococcal species based on its cellular morphological and biochemical tests. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any species of this genus. The nearest phylogenetic relative of the unknown coccus from chamois was Streptococcus ovis (95.9 % 16S rRNA gene sequence similarity). The rpoB and sodA sequence analysis showed sequence similarity values of less than 85.7 % and 83.0 %, respectively, with the currently recognized species of the genus Streptococcus. The novel bacterial isolate was distinguished from S. ovis and other species of the genus Streptococcus using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a novel species of the genus Streptococcus, Streptococcus rupicaprae sp. nov., with the type strain 2777-2-07T ( = CECT 7718T  = CCUG 59652T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1397-1401 ◽  
Author(s):  
Qi Zhao ◽  
Yu Bai ◽  
Gaosen Zhang ◽  
Shan Zhu ◽  
Hongmei Sheng ◽  
...  

Strain TSBY 67T was isolated during a study on the phylogenetic diversity of culturable bacteria from alpine permafrost in Tianshan Mountains, China. On the basis of 16S rRNA gene sequence analysis, strain TSBY 67T was closely related to members of the genus Chryseobacterium and exhibited 96.8 % 16S rRNA gene sequence similarity to Chryseobacterium aquaticum 10-46T and Chryseobacterium soldanellicola PSD 1-4T. Strain TSBY 67T grew aerobically, at 4–37 °C, with 0–2 % NaCl and at pH 6–8. Cells were Gram-staining negative, non-motile and non-spore-forming rods. The dominant cellular fatty acids were iso-C15 : 0 (26.9 %), iso-C17 : 0 3-OH (16.1 %) and iso-C17 : 1ω9c (15.4 %). The G+C content of the DNA was 33.5 mol%. Strain TSBY 67T was distinguishable from its closest phylogenetic neighbours by a combination of phenotypic characteristics. Therefore, strain TSBY 67T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium xinjiangense sp. nov. is proposed. The type strain is TSBY 67T ( = NRRL B-51308T = CCTCC AB 207183T).


2010 ◽  
Vol 60 (7) ◽  
pp. 1548-1553 ◽  
Author(s):  
A. Imran ◽  
F. Y. Hafeez ◽  
A. Frühling ◽  
P. Schumann ◽  
K. A. Malik ◽  
...  

A Gram-staining-negative, aerobic, rod-shaped, non-spore-forming bacterial strain, Ca-34T, was isolated from nodules of chickpea (Cicer arietinum) in Pakistan and studied for its taxonomic affiliation. The almost full-length 16S rRNA gene sequence showed highest similarities to those of strains of the genus Ochrobactrum. Based on results of MALDI-TOF MS and 16S rRNA gene sequence similarity (98.6 %), strain Ca-34T and Ochrobactrum intermedium LMG 3301T are phylogenetic neighbours; the two strains shared DNA–DNA relatedness of 64 %. The fatty acid profile [predominantly C18 : 1 ω7c (67.7 %) and C19 : 0 cyclo ω8c (19.6 %)] also supported the genus affiliation. Metabolically, strain Ca-34T differed from other type strains of Ochrobactrum in many reactions and from all type strains in testing positive for gelatin hydrolysis and in testing negative for assimilation of alaninamide and l-threonine. Based on phenotypic and genotypic data, we conclude that strain Ca-34T represents a novel species, for which we propose the name Ochrobactrum ciceri sp. nov. (type strain Ca-34T =DSM 22292T =CCUG 57879T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1851-1855 ◽  
Author(s):  
Atsuko Katsuta ◽  
Kyoko Adachi ◽  
Satoru Matsuda ◽  
Yoshikazu Shizuri ◽  
Hiroaki Kasai

A novel Ferrimonas species is described on the basis of phenotypic, chemotaxonomic and phylogenetic studies. Four halophilic organisms were isolated from marine sand and marine macroalgae samples by using high-pH marine agar 2216. An analysis of the nearly complete 16S rRNA gene sequences of these new isolates indicated that they were phylogenetically close (16S rRNA gene sequence similarity >99·5 %, gyrB gene sequence similarity >97·8 %), and were most closely related to Ferrimonas balearica (16S rRNA gene sequence similarity 97·1–97·3 %, gyrB gene sequence similarity 84·4–85·0 %). Chemotaxonomic data (major menaquinone MK7; major fatty acids C16 : 0 and C18 : 1 ω9c) supported the affiliation of the new isolates to the genus Ferrimonas. The results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from F. balearica. It is therefore proposed that the new isolates represent a novel species with the name Ferrimonas marina sp. nov. and type strain A4D-4T (=MBIC06480T=DSM 16917T).


Sign in / Sign up

Export Citation Format

Share Document