scholarly journals Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans

2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.

2011 ◽  
Vol 61 (4) ◽  
pp. 834-838 ◽  
Author(s):  
Misa Otoguro ◽  
Hideki Yamamura ◽  
Tomohiko Tamura ◽  
Rohmatussolihat Irzaldi ◽  
Shanti Ratnakomala ◽  
...  

Two actinomycete strains, ID05-A0653T and ID06-A0464T, were isolated from soils of West Timor and Lombok island, respectively, in Indonesia. 16S rRNA gene sequence analysis clearly demonstrated that the isolates belonged to the family Pseudonocardiaceae and were closely related to the genus Actinophytocola. Strains ID05-A0653T and ID06-A0464T exhibited 98.1 and 98.2 % 16S rRNA gene sequence similarity, respectively, with Actinophytocola oryzae GMKU 367T. The isolates grew well on ISP media and produced white aerial mycelium. Short spore chains were formed directly on the substrate mycelium. The isolates contained meso-diaminopimelic acid, arabinose and galactose as cell-wall components, MK-9(H4) as the sole isoprenoid quinone, iso-C16 : 0 as the major cellular fatty acid and phosphatidylethanolamine as the diagnostic polar lipid. The DNA G+C contents of strains ID05-A0653T and ID06-A0464T were 69.7 and 71.2 mol%, respectively. On the basis of phenotypic characteristics, DNA–DNA relatedness and 16S rRNA gene sequence comparisons, strains ID05-A0653T and ID06-A0464T each represent a novel species of the genus Actinophytocola, for which the names Actinophytocola timorensis sp. nov. (type strain ID05-A0653T  = BTCC B-673T  = NBRC 105524T) and Actinophytocola corallina sp. nov. (type strain ID06-A0464T  = BTCC B-674T  = NBRC 105525T) are proposed.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3476-3480 ◽  
Author(s):  
Long Jin ◽  
Hyung-Gwan Lee ◽  
So-Ra Ko ◽  
Chi-Yong Ahn ◽  
Hee-Mock Oh

A Gram-stain-positive, aerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain PB158T, was isolated from grass soil sampled in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies placed the novel isolate in the class Actinobacteria, and most closely related to Jatrophihabitans endophyticus S9-650T and Jatrophihabitans soli KIS75-12T with 98.1 and 97.0 % 16S rRNA gene sequence similarity, respectively. Cells of strain PB158T formed yellow colonies on R2A agar, contained MK-9(H4) as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic diamino acid, and included iso-C16 : 0, C18 : 1ω9c, and C17 : 1ω8c as the major fatty acids (>5 %). The acyl type was found to be N-glycolylated. The G+C content of genomic DNA of strain PB158T was 72.4 mol%. In DNA–DNA hybridizations, the DNA–DNA relatedness value observed between strain PB158T and the type strain of J. endophyticus was 21.8 % indicating that the two strains do not belong to the same species. Thus, the combined genotypic and phenotypic data supported the conclusion that strain PB158T represents a novel species of the genus Jatrophihabitans, for which the name Jatrophihabitans fulvus sp. nov. is proposed. The type strain is PB158T ( = KCTC 33605T = JCM 30448T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2579-2582 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Li-Hua Xu ◽  
Cheng-Lin Jiang ◽  
...  

Strain B538T is a Gram-positive, motile, rod-shaped bacterium, which was isolated from Xinjiang province in China. This organism grew optimally at 30–35 °C and pH 8.0–8.5. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B538T belonged to the genus Paenibacillus and chemotaxonomic data (DNA G+C content, 47.0 mol%; major isoprenoid quinone, MK-7; cell wall type, A1γ meso-diaminopimelic acid; major fatty acids, anteiso-C15 : 0 and C16 : 0) supported affiliation of the isolate with the genus Paenibacillus. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Paenibacillus glycanilyticus DS-1T, with 16S rRNA gene sequence similarity of 98.1 %; sequence similarities to other members of the genus Paenibacillus used in the phylogenetic tree were less than 96.5 %. The DNA–DNA relatedness between strain B538T and P. glycanilyticus DS-1T was about 8.0 %. On the basis of physiological and molecular properties, strain B538T (=KCTC 3952T=DSM 16970T) is proposed as the type strain of a novel species within the genus Paenibacillus, for which the name Paenibacillus xinjiangensis sp. nov. is proposed.


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3885-3893 ◽  
Author(s):  
Sandra Baumgardt ◽  
Igor Loncaric ◽  
Peter Kämpfer ◽  
Hans-Jürgen Busse

Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3 % similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7 % 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA–DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18 : 1ω9c and C16 : 0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1495-1500 ◽  
Author(s):  
Min Wu ◽  
Guiqin Yang ◽  
Zhen Yu ◽  
Li Zhuang ◽  
Yingqiang Jin ◽  
...  

Two Gram-stain-positive, rod-shaped and endospore-forming bacteria, designated WM-1T and WM-4, were isolated from a paddy soil and a forest soil, respectively, in South China. Comparative 16S rRNA gene sequence analyses showed that both strains were members of the genus Oceanobacillus and most closely related to Oceanobacillus chironomi LMG 23627T with pairwise sequence similarity of 96.0 %. The isolates contained menaquinone-7 (MK-7) as the respiratory quinone and anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0 as the major fatty acids (>10 %). Polar lipids consisted of a predominance of diphosphatidylglycerol and moderate to minor amounts of phosphatidylglycerol and phosphatidylinositol. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The DNA G+C content was 38.6–39.2 mol%. The 16S rRNA gene sequence of strain WM-1T displayed 99.7 % similarity to that of strain WM-4, and DNA–DNA hybridization between the two strains showed a relatedness value of 91 %. Based on the results of this polyphasic study, strains WM-1T and WM-4 represent a novel species in the genus Oceanobacillus , for which the name Oceanobacillus luteolus sp. nov. is proposed. The type strain is WM-1T ( = KCTC 33119T = CGMCC 1.12406T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 693-697 ◽  
Author(s):  
Peter Kämpfer ◽  
Nicole Lodders ◽  
Iris Grün-Wollny ◽  
Karin Martin ◽  
Hans-Jürgen Busse

A Gram-stain-positive, non-spore-forming bacterium (GW5-5797T) was isolated on soil extract agar from sand collected at a depth of 5 m in the Caribbean Sea near Grenada. 16S rRNA gene sequence analysis and similarity studies showed that strain GW5-5797T belongs to the genus Nocardia, and is most closely related to Nocardia speluncae N2-11T (99.2 % similarity) and Nocardia jinanensis 04-5195T (99.2 %) and more distantly related to Nocardia rhamnosiphila 202GMOT (98.6 %) and other Nocardia species. Strain GW5-5797T could be distinguished from all other recognized Nocardia species by sequence similarity values less than 98.5 %. The peptidoglycan diamino acid was meso-diaminopimelic acid. Strain GW5-5797T exhibited a quinone system with the predominant compounds MK-8(H4ω-cyclo) and MK-8(H2). The polar lipid profile of GW5-5797T consisted of the major compounds diphosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid, moderate amounts of phosphatidylinositol and a phosphatidylinositol mannoside and minor amounts of several lipids including a second phosphatidylinositol mannoside. The polyamine pattern contained the major compound spermine and moderate amounts of spermidine. The major fatty acids were C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0. These chemotaxonomic traits are in excellent agreement with those of other Nocardia species. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain GW5-5797T from the most closely related species, showing 16S rRNA gene sequence similarities >98.5 %. Strain GW5-5797T therefore merits separate species status, and we propose the name Nocardia grenadensis sp. nov., with the type strain GW5-5797T ( = CCUG 60970T  = CIP 110294T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1834-1839 ◽  
Author(s):  
Min-Ho Yoon ◽  
Wan-Taek Im

Two strains (Gsoil 492T and Gsoil 643T) isolated in Pocheon Province, South Korea, from soil used for ginseng cultivation were characterized using a polyphasic approach. Both isolates comprised Gram-negative, aerobic, non-motile, rod-shaped bacteria. They had similar chemotaxonomic characteristics, e.g. containing MK-7 as the major quinone, having a DNA G+C content in the range 42.5–43.3 mol% and possessing iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a tight cluster with several uncultured bacterial clones and with the established genera Terrimonas, Niastella and Chitinophaga in the phylum Bacteroidetes but were clearly separate from these genera. The levels of 16S rRNA gene sequence similarity between the isolates and type strains of related genera ranged from 87.5 to 92.4 %. Furthermore, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from phylogenetically closely related species with validly published names. The level of 16S rRNA gene sequence similarity between the two strains was 99.5 %, whereas the DNA–DNA relatedness value was 44 %, indicating that they represent separate species. On the basis of the polyphasic evidence, a novel genus, Flavisolibacter gen. nov., and two novel species, Flavisolibacter ginsengiterrae sp. nov. (type strain Gsoil 492T=KCTC 12656T=DSM 18136T) and Flavisolibacter ginsengisoli sp. nov. (type strain Gsoil 643T=KCTC 12657T=DSM 18119T), are proposed. Flavisolibacter ginsengiterrae is the type species of the genus.


Sign in / Sign up

Export Citation Format

Share Document