scholarly journals Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands

Author(s):  
Jeroen Heyrman ◽  
Bram Vanparys ◽  
Niall A. Logan ◽  
An Balcaen ◽  
Marina Rodríguez-Díaz ◽  
...  

A group of 42 isolates were isolated from the soil of several disused hay fields, in the Drentse A agricultural research area (The Netherlands), that were taken out of production at different times. The group represents hitherto-uncultured Bacillus lineages that have previously been found, by a non-cultural method, to be predominant in soil. The strains were subjected to a polyphasic taxonomic study, including (GTG)5-PCR, 16S rDNA sequence analysis, DNA–DNA hybridizations, DNA base-ratio determination, fatty acid analysis and morphological and biochemical characterization. By comparing the groupings obtained by (GTG)5-PCR and 16S rDNA sequence analysis, six clusters of similar strains could be recognized. A DNA–DNA relatedness study showed that these clusters represented five novel genospecies. Further analysis supported the proposal of five novel species in the genus Bacillus, namely Bacillus novalis sp. nov. (type strain IDA3307T=R-15439T=LMG 21837T=DSM 15603T), Bacillus vireti sp. nov. (type strain IDA3632T=R-15447T=LMG 21834T=DSM 15602T), Bacillus soli sp. nov. (type strain IDA0086T=R-16300T=LMG 21838T=DSM 15604T), Bacillus bataviensis sp. nov. (type strain IDA1115T=R-16315T=LMG 21833T=DSM 15601T) and Bacillus drentensis sp. nov. (type strain IDA1967T=R-16337T=LMG 21831T=DSM 15600T).

2014 ◽  
Vol 52 (12) ◽  
pp. 1056-1056
Author(s):  
Ok-Hwa Hwang ◽  
Sebastian Raveendar ◽  
Young-Ju Kim ◽  
Ji-Hun Kim ◽  
Tae-Hun Kim ◽  
...  

1998 ◽  
Vol 64 (5) ◽  
pp. 840-841 ◽  
Author(s):  
Ryuji Kondo ◽  
Manabu Komura ◽  
Shingo Hiroishi ◽  
Yoshihiko Hata

2014 ◽  
Vol 63 (2) ◽  
pp. 157-166 ◽  
Author(s):  
OZLEM GUNAY-ESIYOK ◽  
NEFISE AKCELIK ◽  
MUSTAFA AKCELIK

Lactococcus lactis strains are used commonly as starters, which contribute to desirable flavour and texture properties known as strain-specific, in dairy industry. Genomic heterogeneity of 30 L. lactis strains originating from Turkey and characterized phenotypically were investigated in this study. Plasmid profiling, PFGE and 16S rDNA sequence analyses were performed to determine the genetic variability of strains. High degree of heterogeneity was detected among the L. lactis strains. Plasmid profiles of strains showed that compared to the plasmid free control strains, namely; L. lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1614, all tested strains carried one to ten plasmids with molecular size ranging from 1.5 to 41.5kb. The fingerprints of strains obtained by PFGE from digestion with ApaI, SmaI and I-CeuI restriction endonucleases of chromosomal DNA's were compared with each other. All strains out of four were grouped into a large cluster A with at least 44% similarity level. The other four strains formed a minor duster B, distinctively different from major cluster A. PFGE results were confirmed by 16S rDNA sequence analysis and strains included in cluster B were identified as members of different species. These results suggested that morphologic and biochemical methods should be verified by reliable molecular approaches for the purpose of strain typing. Also, PFGE was found suitable to determine genomic differentiations among inter- and intra species.


Biofouling ◽  
2010 ◽  
Vol 26 (8) ◽  
pp. 893-899 ◽  
Author(s):  
D. Inbakandan ◽  
P. Sriyutha Murthy ◽  
R. Venkatesan ◽  
S. Ajmal Khan

2004 ◽  
Vol 54 (3) ◽  
pp. 819-825 ◽  
Author(s):  
Ying Li ◽  
Yoshiaki Kawamura ◽  
Nagatoshi Fujiwara ◽  
Takashi Naka ◽  
Hongsheng Liu ◽  
...  

On the basis of phenotypic and genotypic characteristics and 16S rRNA gene sequence analysis, novel species belonging to the genera Sphingomonas and Brevundimonas were identified from samples taken from the Russian space laboratory Mir. Strain A1-18T was isolated from the air. 16S rDNA sequence analysis showed that strain A1-18T formed a coherent cluster with Sphingomonas sanguinis, Sphingomonas parapaucimobilis, Sphingomonas paucimobilis and Sphingomonas roseiflava with sequence similarity of 97·5–98·6 %. Similar to other Sphingomonas species, the G+C content was 66·1 mol%, but DNA–DNA hybridization rates at optimal temperatures among these related species were only 24·7–51·7 %. Strain A1-18T can be differentiated biochemically from related species. Strain W1-2BT was isolated from condensation water. It forms a distinct lineage within the genus Brevundimonas, forming a coherent cluster with Brevundimonas vesicularis, Brevundimonas aurantiaca and Brevundimonas intermedia. 16S rDNA sequence similarities were 98·6–99·5 % and the G+C content was 66·5 mol%, similar to other Brevundimonas species, but DNA–DNA relatedness was only 50·2–54·8 %. Strain W1-2BT also showed some differential biochemical properties from its related species. A series of polyphasic taxonomic studies led to the proposal of two novel species, Sphingomonas yabuuchiae sp. nov. (type strain A1-18T=GTC 868T=JCM 11416T=DSM 14562T) and Brevundimonas nasdae sp. nov. (type strain W1-2BT=GTC 1043T=JCM 11415T=DSM 14572T).


Sign in / Sign up

Export Citation Format

Share Document