major cluster
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 48)

H-INDEX

30
(FIVE YEARS 4)

2024 ◽  
Vol 84 ◽  
Author(s):  
A. Nadeem ◽  
S. Hussain ◽  
A. Fareed ◽  
M. Fahim ◽  
T. Iqbal ◽  
...  

Abstract Maydis leaf blight, caused by Bipolaris maydis, is an important disease of maize crop in Khyber Pakhtunkhwa (KP) Pakistan. Fifteen isolates of the pathogen, collected across KP, were studied for variability based on phenotypic and molecular markers. Significant variability among the isolates was observed when assessed using phenotypic traits such as radial growth, spore concentration, fungicide sensitivity and virulence. The isolates were classified into six culture groups based on colour, texture and margins of the colony. Conidial morphology was also variable. These were either straight or slightly curved and light to dark brown in colour. Fungicide test showed significant variation in the degree of sensitivity against Carbendazim. Isolate Bm8 exhibited maximum radial growth on carbendazim spiked plates. Conversely, isolate Bm15 showed the lowest radial growth. Variations in virulence pattern of the isolates were evident when a susceptible maize variety Azam was inoculated with spores of B. maydis. Genetic variability amongst the isolates was also estimated by RAPD as well as sequencing of ITS region. The RAPD dendrogram grouped all the isolates into two major clusters. Average genetic distance ranged from 0.6% to 100%, indicating a diverse genetic gap among the isolates. Maximum genetic distance was found between isolates Bm9 and Bm10 as well as Bm2 and Bm8. Conversely, isolates Bm13 and Bm15 were at minimum genetic distance. Phylogenetic dendrogram based on sequencing of ITS region grouped all the isolates into a single major cluster. The clusters in both the dendrogram neither correlate to the geographical distribution nor to the morphological characteristics.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Maria Cristina Cozzi ◽  
Paolo Valiati ◽  
Maria Longeri ◽  
Carlos Ferreira ◽  
Sofia Abreu Ferreira

The Lusitano Horse (LH) originates from Portugal, but is reared worldwide. Since 1994, the University of Milan has routinely tested the LHs bred in Italy for parentage control. This study aims to assess the genetic variability of the LH reared in Italy using 16 microsatellites markers. Moreover, the genetic variability changes over the years in the total population (n.384) and in unrelated horses (n.47) were evaluated. Horses were grouped according to their date of birth (1975–1990, 1991–2000, 2001–2010, 2010–2019). Standard genetic diversity parameters, including observed (Ho) and expected (He) heterozygosity, Hardy-Weinberg equilibrium (HWE; P-Val), allelic richness, and inbreeding coefficient (Fis) were estimated. In the whole period, the total population showed Ho as high as 0.69, low Fis (0.057), and imbalance for HWE. When considering the unrelated horses, Ho was seen to increase over time (from 0.594 in 1975–1990 to 0.68 in 2010–2019) and frequencies were in HWE, again having low and decreasing values of Fis (from 0.208 in 1975–1990 to 0.019 in 2010–2019). Bottleneck analysis excluded a recent population decline. Principal Coordinate Analysis at the individual level defined two clusters, the major cluster including all the most recent horses. An increasing number of dams (156% more from 2001–2010 to 2011–2019) supports the good variability recorded in the population so far. However, the high number of foals (77.2%) sired by only four stallions in recent years suggests caution in the choice of the sires for the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nadia Valentini ◽  
Ezio Portis ◽  
Roberto Botta ◽  
Alberto Acquadro ◽  
Vera Pavese ◽  
...  

An increasing interest in the cultivation of (European) hazelnut (Corylus avellana) is driving a demand to breed cultivars adapted to non-conventional environments, particularly in the context of incipient climate change. Given that plant phenology is so strongly determined by genotype, a rational approach to support these breeding efforts will be to identify quantitative trait loci (QTLs) and the genes underlying the basis for adaptation. The present study was designed to map QTLs for phenology-related traits, such as the timing of both male and female flowering, dichogamy, and the period required for nuts to reach maturity. The analysis took advantage of an existing linkage map developed from a population of F1 progeny bred from the cross “Tonda Gentile delle Langhe” × “Merveille de Bollwiller,” consisting in 11 LG. A total of 42 QTL-harboring regions were identified. Overall, 71 QTLs were detected, 49 on the TGdL map and 22 on the MB map; among these, 21 were classified as major; 13 were detected in at least two of the seasons (stable-major QTL). In detail, 20 QTLs were identified as contributing to the time of male flowering, 15 to time of female flowering, 25 to dichogamy, and 11 to time of nut maturity. LG02 was found to harbor 16 QTLs, while 15 QTLs mapped to LG10 and 14 to LG03. Many of the QTLs were clustered with one another. The major cluster was located on TGdL_02 and consisted of mainly major QTLs governing all the analyzed traits. A search of the key genomic regions revealed 22 candidate genes underlying the set of traits being investigated. Many of them have been described in the literature as involved in processes related to flowering, control of dormancy, budburst, the switch from vegetative to reproductive growth, or the morphogenesis of flowers and seeds.


Author(s):  
Chunye Zhang ◽  
Shuai Liu ◽  
Ming Yang

Tissue-resident macrophages play critically important roles in host homeostasis and pathogenesis of diseases, with the functions of phagocytosis, metabolism, and immune modulation. Recently, two research studies accomplished by a collaborated group of researchers showed that there are two populations of liver resident Kupffer cells (KCs), including a major cluster of differentiation 206 low expression (CD206low)endothelial cell-selective adhesion molecule negative (ESAM-) population (KC1) and a minor CD206highESAM+ population (KC2). Both KC1 and KC2 express KC markers, such as C-type lectin domain family 4 member F (CLEC4F) and T-cell membrane protein 4 (Tim4). In fatty liver, the frequency of KC2 was increased, and those KC2 expressed some markers like liver sinusoidal endothelial cells (LSECs), such as CD31 and ESAM. In addition, KC2 population had a relatively higher expression of CD36, as fatty acid transporter, which was implicated in the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, this collaborated group also showed that KC2 can cross-present hepatocellular antigens to prime antiviral function of CD8+ T cells by sensing interleukin-2 (IL-2) in hepatitis B virus (HBV) replication-competent transgenic mice. Increasing evidence shows that targeting hepatic macrophages can prevent and reverse non-alcoholic fatty liver disease (NAFLD), with a new suggested name metabolic dysfunction-associated fatty liver disease (MAFLD) to include metabolic dysfunction-associated fatty liver diseases, such as viruses and alcohol. In summary, differentiating specific populations of hepatic macrophages is critically important for the treatment of MAFLD or NAFLD, and their overlaps. Markers specifically expressed on sub-types of hepatic macrophages may be applied for liver disease diagnosis.


2021 ◽  
Author(s):  
Ighor Arantes ◽  
Felipe Gomes Naveca ◽  
Tiago Graf ◽  
Fabio Miyajima ◽  
Helisson Faoro ◽  
...  

The SARS-CoV-2 Variant of Concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the Southern region, followed by more cases in different country regions during the following months. By early September 2021, Delta was already the dominant variant in the Southeastern (87%), Southern (73%), and Northeastern (52%) Brazilian regions. This work aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of Maximum Likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 of VOC Delta complete genomes (482 from this study) recovered across 21 out of 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the Southeastern, Northeastern, Northern, and Central-Western regions. The clade BR-II (n = 207) arose in the Parana state in late April 2021 and aggregated the largest fraction of sampled genomes from the Southern region. Lastly, the clade BR-III emerged in the Sao Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic.


2021 ◽  
Author(s):  
Bernardo Gutierrez ◽  
Hugo G Castelan ◽  
Darlan da Silva Candido ◽  
Ben Jackson ◽  
Shay Fleishon ◽  
...  

Genetic recombination is an important driving force of coronavirus evolution. While some degree of virus recombination has been reported during the COVID-19 pandemic, previously detected recombinant lineages of SARS-CoV-2 have shown limited circulation and been observed only in restricted areas. Prompted by reports of unusual genetic similarities among several Pango lineages detected mainly in North and Central America, we present a detailed phylogenetic analysis of four SARS-CoV-2 lineages (B.1.627, B.1.628, B.1.631 and B.1.634) in order to investigate the possibility of virus recombination among them. Two of these lineages, B.1.628 and B.1.631, are split into two distinct clusters (here named major and minor). Our phylogenetic and recombination analyses of these lineages find well-supported phylogenetic differences between the Orf1ab region and the rest of the genome (S protein and remaining reading frames). The lineages also contain several deletions in the NSP6, Orf3a and S proteins that can augment reconstruction of reliable evolutionary histories. By reconciling the deletions and phylogenetic data, we conclude that the B.1.628 major cluster originated from a recombination event between a B.1.631 major virus and a lineage B.1.634 virus. This scenario inferred from genetic data is supported by the spatial and temporal distribution of the three lineages, which all co-circulated in the USA and Mexico during 2021, suggesting this region is where the recombination event took place. We therefore support the designation of the B.1.628 major cluster as recombinant lineage XB in the Pango nomenclature. The widespread circulation of lineage XB across multiple countries over a longer timespan than the previously designated recombinant XA lineage raises important questions regarding the role and potential effects of recombination on the evolution of SARS-CoV-2 during the ongoing COVID-19 pandemic.


2021 ◽  
Author(s):  
Jack Leary ◽  
Yi Xu ◽  
Ashley Morrison ◽  
Chong Jin ◽  
Emily C. Shen ◽  
...  

Single-cell RNA-sequencing (scRNA-seq) has enabled the molecular profiling of thousands to millions of cells simultaneously in biologically heterogenous samples. Currently, common practice in scRNA-seq is to determine cell type labels through unsupervised clustering and the examination of cluster-specific genes. However, even small differences in analysis and parameter choice can greatly alter clustering solutions and thus impose great influence on which cell types are identified. Existing methods largely focus on determining the optimal number of robust clusters, which is not favorable for identifying cells of extremely low abundance due to their subtle contributions towards overall patterns of gene expression. Here we present a carefully designed framework, SCISSORS, which accurately profiles subclusters within major cluster(s) for the identification of rare cell types in scRNA-seq data. SCISSORS employs silhouette scoring for the estimation of heterogeneity of clusters and reveals rare cells in heterogenous clusters by implementing a multi-step, semi-supervised reclustering process. Additionally, SCISSORS provides a method for the identification of marker genes of rare cells, which may be used for further study. SCISSORS is wrapped around the popular Seurat R package and can be easily integrated into existing Seurat pipelines. SCISSORS, including source code and vignettes for two example datasets, is freely available at https://github.com/jrleary/SCISSORS.


2021 ◽  
Author(s):  
Jessy Carol Ntunzwenimana ◽  
Gabrielle Boucher ◽  
Jean Paquette ◽  
Hugues Gosselin ◽  
Azadeh Alikashani ◽  
...  

Background: Genetic studies have been tremendously successful in identifying genomic regions associated with a wide variety of phenotypes, although the success of these studies in identifying causal genes, their variants, and their functional impacts have been more limited. Methods: We identified 145 genes from IBD-associated genomic loci having endogenous expression within the intestinal epithelial cell compartment. We evaluated the impact of lentiviral transfer of the open reading frame (ORF) of these IBD genes into the HT-29 intestinal epithelial cell line via transcriptomic analyses. Comparing the genes whose expression was modulated by each ORF, as well as the functions enriched within these gene lists, identified ORFs with shared impacts and their putative disease-relevant biological functions. Results: Analysis of the transcriptomic data for cell lines expressing the ORFs for known causal genes such as HNF4a, IFIH1 and SMAD3 identified functions consistent for what is known for these genes. These analyses also identified two major cluster of genes: Cluster 1 contained the known IBD causal genes IFIH1, SBNO2, NFKB1 and NOD2, as well as genes from other IBD loci (ZFP36L1, IRF1, GIGYF1, OTUD3, AIRE and PITX1), whereas Cluster 2 contained the known causal gene KSR1 and implicated DUSP16 from another IBD locus. Our analyses highlight how multiple IBD gene candidates impact on epithelial structure and function, including the protection of the mucosa from intestinal microbiota, and demonstrate that DUSP16, acts a regulator of MAPK activity and contributes to mucosal defense, in part via its regulation of the polymeric immunoglobulin receptor, involved in the protection of the intestinal mucosa from enteric microbiota. Conclusions: This functional screen, based on expressing IBD genes within an appropriate cellular context, in this instance intestinal epithelial cells, resulted in changes to the cell's transcriptome that are relevant to their endogenous biological function(s). This not only helped in identifying likely causal genes within genetic loci but also provided insight into their biological functions. Furthermore, this work has highlighted the central role of intestinal epithelial cells in IBD pathophysiology, providing a scientific rationale for a drug development strategy that targets epithelial functions in addition to the current therapies targeting immune functions.


Author(s):  
Nishi Mishra ◽  
Manoj Kumar Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Neha Gupta ◽  
...  

Introduction: As an important source of nutrients to humans and animals, soybean is considered to be a major crop. Objective: The present study has been executed to identify diverse soybean genotypes on account of different morpho-physiological and microsatellite molecular markers. Study Design: Data for Morpho-physiological traits were recorded from experiment conducted under field conditions in RBD design whereas molecular work was conducted in Laboratory. Place and Duration of the Study: The present study was conducted at College of Agriculture, Gwalior, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, M.P., India during Kharif 2018-19. Methodology: The study was conducted to document different morphological and physiological traits related to the yield and its attributing traits in soybean. Total 32 microsatellite markers were also used in laboratory to analyze the variability among soybean genotypes. Results: Morpho-physiological analysis among 53 genotypes revealed the presence of considerable level of variability. Phylogenetic tree based on morpho-physiological traits grouped the genotypes into major and minor cluster. Major cluster had fifty genotypes while minor cluster had only three genotypes. Among polymorphic 32 microsatellite markers, the highest genetic diversity (0.66) was recorded in Satt520 whilst lowest (0.037) was in Satt557 with an average of 0.35. The highest PIC value was 0.59 prearranged by Satt520 and lowest 0.036 by Satt557. An average major allele frequency was 0.69 while, an average PIC value was 0.32. Microsatellite markers-based data also grouped the genotypes into one major and one minor cluster. Conclusion: Molecular analysis based on microsatellite markers confirms the presence of genetic variability among genotypes under the investigation. Data obtained in the present investigation may contribute towards improvement of soybean genotypes to develop high yielding varieties by considering diverse genotypes with good agronomical traits in hybridization programme.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jacy Bezerra Parmera ◽  
Isabel Junqueira de Almeida ◽  
Marcos Castello Barbosa de Oliveira ◽  
Marcela Lima Silagi ◽  
Camila de Godoi Carneiro ◽  
...  

Introduction: Corticobasal syndrome (CBS) is a progressive neurological disorder related to multiple underlying pathologies, including four-repeat tauopathies, such as corticobasal degeneration and progressive supranuclear palsy, and Alzheimer's disease (AD). Speech and language are commonly impaired, encompassing a broad spectrum of deficits. We aimed to investigate CBS speech and language impairment patterns in light of a multimodal imaging approach.Materials and Methods: Thirty-one patients with probable CBS were prospectively evaluated concerning their speech–language, cognitive, and motor profiles. They underwent positron emission tomography with [18F]fluorodeoxyglucose (FDG-PET) and [11C]Pittsburgh Compound-B (PIB-PET) on a hybrid PET-MRI machine to assess their amyloid status. PIB-PET images were classified based on visual and semi-quantitative analyses. Quantitative group analyses were performed on FDG-PET data, and atrophy patterns on MRI were investigated using voxel-based morphometry (VBM). Thirty healthy participants were recruited as imaging controls.Results: Aphasia was the second most prominent cognitive impairment, presented in 67.7% of the cases, following apraxia (96.8%). We identified a wide linguistic profile, ranging from nonfluent variant-primary progressive aphasia to lexical–semantic deficits, mostly with impaired verbal fluency. PIB-PET was classified as negative (CBS-A– group) in 18/31 (58%) and positive (CBS-A+ group) in 13/31 (42%) patients. The frequency of dysarthria was significantly higher in the CBS-A– group than in the CBS-A+ group (55.6 vs. 7.7%, p = 0.008). CBS patients with dysarthria had a left-sided hypometabolism at frontal regions, with a major cluster at the left inferior frontal gyrus and premotor cortex. They showed brain atrophy mainly at the opercular frontal gyrus and putamen. There was a positive correlation between [18F]FDG uptake and semantic verbal fluency at the left inferior (p = 0.006, R2 = 0.2326), middle (0.0054, R2 = 0.2376), and superior temporal gyri (p = 0.0066, R2 = 0.2276). Relative to the phonemic verbal fluency, we found a positive correlation at the left frontal opercular gyrus (p = 0.0003, R2 = 0.3685), the inferior (p = 0.0004, R2 = 0.3537), and the middle temporal gyri (p = 0.0001, R2 = 0.3993).Discussion: In the spectrum of language impairment profile, dysarthria might be helpful to distinguish CBS patients not related to AD. Metabolic and structural signatures depicted from this feature provide further insights into the motor speech production network and are also helpful to differentiate CBS variants.


Sign in / Sign up

Export Citation Format

Share Document