scholarly journals Actinomycetospora rishiriensis sp. nov., isolated from a lichen

2011 ◽  
Vol 61 (11) ◽  
pp. 2621-2625 ◽  
Author(s):  
Hideki Yamamura ◽  
Haruna Ashizawa ◽  
Youji Nakagawa ◽  
Moriyuki Hamada ◽  
Yuumi Ishida ◽  
...  

An actinomycete, strain RI109-Li102T, was isolated from a lichen sample obtained from Rishiri Island in Japan. Cells of strain RI109-Li102T were Gram-positive, aerobic and non-motile and formed bud-like spore chains. The isolate grew with 0–3 % (w/v) NaCl, at pH 5–9 and at 10–30 °C (optimum 30 °C). The whole-cell hydrolysate contained meso-diaminopimelic acid, arabinose and galactose. The predominant menaquinone was MK-8(H4) and the diagnostic phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and diphosphatidylglycerol. The major cellular fatty acids were iso-C16 : 0 and iso-C16 : 1 H. Comparative 16S rRNA gene sequence analysis revealed that strain RI109-Li102T was most closely related to Actinomycetospora corticicola 014-5T (99.0 % rRNA gene sequence similarity) and Actinomycetospora chiangmaiensis YIM 0006T (98.4 %). However, DNA–DNA hybridization assays, as well as physiological and biochemical analyses, showed that strain RI109-Li102T could be differentiated from its closest phylogenetic relatives. It is proposed that strain RI109-Li102T ( = NBRC 106356T  = KCTC 19782T) be classified as the type strain of a novel species, with the name Actinomycetospora rishiriensis sp. nov.

2006 ◽  
Vol 56 (4) ◽  
pp. 703-707 ◽  
Author(s):  
Deok-Chun Yang ◽  
Wan-Taek Im ◽  
Myung Kyum Kim ◽  
Hiroyuki Ohta ◽  
Sung-Taik Lee

Strain T5-04T, a Gram-negative, non-spore-forming, rod-shaped bacterium, was isolated from soil of a ginseng field in South Korea and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain T5-04T belongs to the α-4 subgroup of the Proteobacteria, and the highest degrees of sequence similarity determined were to Sphingomonas asaccharolytica IFO 10564T (97·5 %), Sphingomonas koreensis JSS26T (97·1 %), Sphingomonas mali IFO 15500T (96·7 %) and Sphingomonas pruni IFO 15498T (96·6 %). Chemotaxonomic data revealed that strain T5-04T possesses ubiquinone Q-10 predominantly, C18 : 1 as the predominant fatty acid and sphingoglycolipids, all of which corroborate its assignment to the genus Sphingomonas. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain T5-04T represents a distinct species. Based on polyphasic evidence, T5-04T (=KCTC 12210T=NBRC 100801T=IAM 15213T) should be classified as the type strain of a novel Sphingomonas species, for which the name Sphingomonas soli sp. nov. is proposed.


2007 ◽  
Vol 57 (6) ◽  
pp. 1336-1341 ◽  
Author(s):  
Myung Kyum Kim ◽  
Ju-Ryun Na ◽  
Dong Ha Cho ◽  
Nak-Kyun Soung ◽  
Deok-Chun Yang

Strain Jip14T, a Gram-negative, non-spore-forming, rod-shaped, non-motile bacterium, was isolated from dried rice straw and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Jip14T belongs to the family Sphingobacteriaceae, and the highest degree of sequence similarity was determined to be to Pedobacter saltans DSM 12145T (88.5 %), Pedobacter africanus DSM 12126T (87.6 %), Pedobacter heparinus DSM 2366T (87.1 %) and Pedobacter caeni LMG 22862T (86.9 %). Chemotaxonomic data revealed that strain Jip14T possesses menaquinone MK-7 and the predominant fatty acids C15 : 0 iso, C16 : 0, C16 : 0 10-methyl, C17 : 0 iso 3-OH and summed feature 3 (C15 : 0 iso 2-OH/C16 : 1 ω7c). The results of physiological and biochemical tests clearly demonstrated that strain Jip14T represents a distinct species. Based on these data, Jip14T should be classified within a novel genus and species, for which the name Parapedobacter koreensis gen. nov., sp. nov. is proposed. The type strain of Parapedobacter koreensis is Jip14T (=KCTC 12643T=LMG 23493T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2226-2230 ◽  
Author(s):  
Jing Zhang ◽  
Shu-Kun Tang ◽  
Yu-Qin Zhang ◽  
Li-Yan Yu ◽  
Hans-Peter Klenk ◽  
...  

A thermophilic strain, designated YIM 10002T, was isolated from a soil sample of Big Empty Volcano in Tengchong county, Yunnan province, south-west China, and a polyphasic approach was used to investigate its taxonomic position. Strain YIM 10002T formed endospores on both aerial and substrate mycelia. Whole-cell hydrolysates contained meso-diaminopimelic acid, ribose, xylose and glucose. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The predominant menaquinone was MK-9. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides, together with some unknown phospholipids. The G+C content of its genomic DNA was 48.6 mol%. All of these chemotaxonomic data together with morphological characters consistently assigned strain YIM 10002T to the genus Laceyella. 16S rRNA gene sequence analysis showed that strain YIM 10002T was most closely related to Laceyella sacchari KCTC 9790T and Laceyella putida KCTC 3666T (99.9 and 98.0 % 16S rRNA gene sequence similarity, respectively). However, strain YIM 10002T showed relatively low DNA–DNA relatedness (34.0 and 39.0 %, respectively) with the above strains. Therefore, strain YIM 10002T represents a novel species of the genus Laceyella, for which the name Laceyella tengchongensis sp. nov. is proposed. The type strain is YIM 10002T (=DSM 45262T =CCTCC AA 208050T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3894-3899 ◽  
Author(s):  
Nattaporn Klykleung ◽  
Somboon Tanasupawat ◽  
Pattama Pittayakhajonwut ◽  
Moriya Ohkuma ◽  
Takuji Kudo

A novel actinomycete, strain ST1-08T, was isolated from the stem of Stemona sp. in Thailand. The taxonomic position of this isolate was determined by using a polyphasic approach. Strain ST1-08T contained meso-diaminopimelic acid in the cell-wall peptidoglycan, and arabinose and galactose as diagnostic sugars of the whole-cell hydrolysate, which are typical properties of members of the genus Amycolatopsis. Strain ST1-08T grew at 15–40 °C, pH 6–9 and on 5 % (w/v) NaCl. Gelatin liquefaction, starch hydrolysis and skimmed milk peptonization were positive. The strain utilized l-arabinose, d-glucose, glycerol, myo-inositol, d-mannitol and l-rhamnose. The predominant menaquinone was MK-9(H4) and the major cellular fatty acids were iso-C16 : 0 and iso-C15 : 0.The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyl-phosphatidylethanolamine, phosphatidylinositol and phosphatidylglycerol. The 16S rRNA gene sequence analysis revealed that the strain was closely related to Amycolatopsis pretoriensis JCM 12673T (98.99 %) and Amycolatopsis lexingtonensis JCM 12672T (98.87 %). The DNA G+C content of strain ST1-08T was 71.2 mol%. The DNA–DNA relatedness values among strain ST1-08T, A. pretoriensis JCM 12673T and A. lexingtonensis JCM 12672T were lower than 70 %, the cut-off level for assigning strains to the same species. On the basis of phenotypic and genotypic characteristics, strain ST1-08T represents a novel species of the genus Amycolatopsis, for which the name Amycolatopsis stemonae is proposed. The type strain is ST1-08T( = JCM 30050T = PCU 339T = TISTR 2278T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1615-1619 ◽  
Author(s):  
Myung Kyum Kim ◽  
Wan-Taek Im ◽  
Jun-Gyo In ◽  
Sung-Hoon Kim ◽  
Deok-Chun Yang

A Gram-negative, non-spore-forming, rod-shaped, motile bacterium, strain Ko06T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Ko06T belongs to the Gammaproteobacteria, and the highest levels of sequence similarity were with Thermomonas brevis LMG 21746T (98.4 %), Thermomonas fusca LMG 21737T (97.7 %), Thermomonas haemolytica A50-7-3T (96.5 %) and Thermomonas hydrothermalis SGM-6T (95.8 %). Chemotaxonomic data revealed that strain Ko06T possesses ubiquinone Q-8 and that the predominant fatty acids are C15 : 0 iso, C11 : 0 iso and C11 : 0 iso 3-OH, all of which corroborated assignment of the strain to the genus Thermomonas. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain Ko06T represents a distinct species. On the basis of these data, strain Ko06T (=KCTC 12540T=NBRC 101155T) should be classified as the type strain of a novel Thermomonas species, for which the name Thermomonas koreensis sp. nov. is proposed.


2010 ◽  
Vol 60 (7) ◽  
pp. 1522-1526 ◽  
Author(s):  
Ho-Bin Kim ◽  
Sathiyaraj Srinivasan ◽  
Gayathri Sathiyaraj ◽  
Lin-Hu Quan ◽  
Se-Hwa Kim ◽  
...  

A Gram-negative, non-spore-forming, rod-shaped bacterium, designated strain DCY01T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain DCY01T belonged to the Gammaproteobacteria and was most closely related to Stenotrophomonas koreensis KCTC 12211T (98.4 % similarity), Stenotrophomonas humi R-32729T (97.2 %), Stenotrophomonas terrae R-32768 (97.1 %), Stenotrophomonas maltophilia DSM 50170T (96.9 %) and Stenotrophomonas nitritireducens DSM 12575T (96.8 %). Chemotaxonomic analyses revealed that strain DCY01T possessed a quinone system with Q-8 as the predominant compound, and iso-C15 : 0 (28.2 %), C16 : 0 10-methyl (13.2 %), iso-C15 : 1 F (10.8 %) and C15 : 0 (7.5 %) as major fatty acids, corroborating assignment of strain DCY01T to the genus Stenotrophomonas. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain DCY01T represents a species distinct from recognized Stenotrophomonas species. Based on these data, DCY01T (=KCTC 12539T=NBRC 101154T) should be classified as the type strain of a novel species of the genus Stenotrophomonas, for which the name Stenotrophomonas ginsengisoli sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3262-3270 ◽  
Author(s):  
Tuan Manh Nguyen ◽  
Jaisoo Kim

Strain T13T, isolated from forest soil in Jeollabuk-do, South Korea, exhibited antibiotic production on yeast extract-malt extract-glucose (YMG) medium containing magnesium chloride as a trace mineral, and inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Paenibacillus larvae, Escherichia coli, Candida albicans and Aspergillus niger. Growth occurred at 15–45 °C, pH 4–11 and in the presence of up to 2 % (w/v) NaCl. Biochemical analyses indicated that the predominant menaquinones produced by this strain were MK-9(H6) and MK-9(H8); small amounts of MK-10(H2) and MK-10(H4) were also detected. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, and the cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained glucose, galactose, ribose and rhamnose. The fatty-acid profile of strain T13T was made up predominantly of iso- and anteiso-branched fatty acids. Genetic analyses demonstrated that strain T13T is closely related to Streptomyces gramineus JR-43T (98.29 % 16S rRNA gene sequence similarity), S. graminisoli JR-19T (97.99 %), S. rhizophilus JR-41T (97.86 %), S. longwoodensis LMG 20096T (97.84 %), S. graminifolii JL-22T (97.79 %) and S. yaanensis Z4T (97.56 %), and DNA–DNA hybridization yielded relatedness values of 35.27–43.42 % when T13T was compared to related strains. The results of morphological, chemotaxonomic, phylogenetic and phenotypic analyses confirm that this strain represents a novel species of the genus Streptomyces, for which the name Streptomyces olivicoloratus sp. nov. is proposed. The type strain is T13T ( = KEMB 9005-210T = KACC 18227T = NBRC 110901T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4544-4549 ◽  
Author(s):  
Fatemeh Mohammadipanah ◽  
Javad Hamedi ◽  
Peter Schumann ◽  
Cathrin Spröer ◽  
María del Carmen Montero-Calasanz ◽  
...  

A novel actinomycete, designated HM 537T, was isolated from soil in Hamedan Province, Iran. Cell-wall hydrolysates of strain HM 537T contained meso-diaminopimelic acid, and whole-cell hydrolysates contained ribose, glucose, galactose, rhamnose and traces of mannose. The main phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and an unknown phospholipid. MK-9(H4), an unknown MK and MK-10(H4) were the predominant menaquinones. The major fatty acids included iso-C16 : 0, iso-C15 : 0, iso-C16 : 1 G and 9(?)-methyl C16 : 0. Strain HM 537T had the highest 16S rRNA gene sequence similarity to Saccharothrix hoggarensis DSM 45457T (99.5 %) and Saccharothrix saharensis DSM 45456T (99.0 %). DNA–DNA hybridization studies showed relatedness values of 13.8 ± 3.3 % with S. hoggarensis DSM 45457T and 16.3 ± 3.5 % with S. saharensis DSM 45456T. Based on the results of phenotypic and genotypic studies, strain HM 537T represents a novel species of the genus Saccharothrix, for which the name Saccharothrix ecbatanensis sp. nov. is proposed. The type strain is HM 537T ( = DSM 45486T = UTMC 00537T = CCUG 63021T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2951-2956 ◽  
Author(s):  
Sei Joon Oh ◽  
Na-Ri Shin ◽  
Dong-Wook Hyun ◽  
Pil Soo Kim ◽  
Joon Yong Kim ◽  
...  

A novel, Gram-stain-positive, non-motile, facultatively anaerobic, rod- or coccoid-shaped bacterium, designated strain ORY33T, was isolated from the gut of a camel cricket (Diestrammena coreana). The 16S rRNA gene sequence analysis showed that strain ORY33T belonged to the genus Weissella , with highest sequence similarity to Weissella koreensis S-5623T (97.7 %). The strain grew optimally at 30 °C and pH 7 in the presence of 0 % (w/v) NaCl. Catalase and oxidase activities were negative. The genomic DNA G+C content of strain ORY33T was 45.1 mol%. DNA–DNA hybridization values between strain ORY33T and closely related members of the genus Weissella were less than 27 %. The major fatty acids of strain ORY33T were C18 : 1ω9c, C16 : 0 and C14 : 0. Based on these phenotypic, phylogenetic and genotypic analyses, strain ORY33T represents a novel species belonging to the genus Weissella , for which the name Weissella diestrammenae sp. nov. is proposed. The type strain is ORY33T ( = KACC 16890T = JCM 18559T).


Sign in / Sign up

Export Citation Format

Share Document