scholarly journals Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity

2004 ◽  
Vol 54 (3) ◽  
pp. 877-883 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Masahito Suzuki ◽  
Yi Huang ◽  
Makoto Umeda ◽  
Isao Ishikawa ◽  
...  

Two bacterial strains, EHS11T and EPSA11T, which were isolated from the human oral cavity, were characterized in terms of phenotypic and biochemical characteristics, cellular fatty acid profiles and phylogenetic position based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that each of the isolates belonged to a novel species of the genus Prevotella. Strain EHS11T was related to Prevotella loescheii (about 95 % similarity), whereas strain EPSA11T was related to Prevotella oris (about 94 % similarity). Both strains were obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative rods. The cellular fatty acid composition of strain EPSA11T was very similar to that of P. oris JCM 8540T. On the other hand, the cellular fatty acid composition of strain EHS11T was significantly different from those of other Prevotella species. The predominant fatty acids in strain EHS11T are C18 : 1 ω9c, C16 : 0 and C16 : 0 3-OH, whereas other Prevotella species, except for P. loescheii JCM 8530T, possess anteiso-C15 : 0, iso-C17 : 0 3-OH and C18 : 1 ω9c. The predominant fatty acids in P. loescheii JCM 8530T are anteiso-C15 : 0, C16 : 0 and C18 : 1 ω9c. DNA–DNA hybridization experiments revealed a genomic distinction of strains EHS11T and EPSA11T from P. loescheii JCM 8530T and P. oris JCM 8540T. On the basis of these data, two novel Prevotella species are proposed: Prevotella shahii sp. nov. and Prevotella salivae sp. nov. The type strains of P. shahii and P. salivae are EHS11T (=JCM 12083T=DSM 15611T) and EPSA11T (=JCM 12084T=DSM 15606T), respectively.

2005 ◽  
Vol 55 (5) ◽  
pp. 1839-1843 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Makoto Umeda ◽  
Isao Ishikawa ◽  
Yoshimi Benno

Six bacterial strains isolated from the human oral cavity, PPPA16, PPPA20T, PPPA24, PPPA31, EPPA6 and EPPA7, were characterized by determining phenotypic and biochemical features, cellular fatty acid profiles, menaquinone profiles and phylogenetic position based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that the isolates represented the same species of the genus Prevotella. The strains were related to Prevotella dentalis with about 89 % similarity. In addition, the isolates were related to Prevotella sp. oral clone IDR-CEC-0032, which is a representative of the numerically dominant cluster VI in carious dentine lesions [Nadkarni et al. (2004). J Clin Microbiol 42, 5238–5244], with about 99 % similarity. The strains were obligately anaerobic, non-pigmenting, non-spore-forming, non-motile, Gram-negative rods. The isolates could be differentiated from other Prevotella species by d-mannitol, d-melezitose, d-sorbitol and d-trehalose fermentation in API 20A tests. The cellular fatty acid composition of strains PPPA16, PPPA20T, PPPA24, PPPA31, EPPA6 and EPPA7 was significantly different from that of other Prevotella species. Compared with other Prevotella species, only these six strains contained dimethyl acetals. The major menaquinones of the clinical isolates were MK-12 and MK-13, whereas the major menaquinones of other Prevotella species were MK-10 and MK-11. On the basis of these data, a novel Prevotella species, Prevotella multisaccharivorax sp. nov., is proposed, with PPPA20T (=JCM 12954T=DSM 17128T) as the type strain.


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1725-1728 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Kiyofumi Ohkusu ◽  
Takayuki Masaki ◽  
Hirofumi Kako ◽  
Takayuki Ezaki ◽  
...  

A strain isolated from pleural fluid of a patient with suppurative pleuritis (strain GTC 3021T) was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile and phylogenetic position based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Prevotella. The isolate was related to Prevotella enoeca ATCC 51261T with about 92 % 16S rRNA gene sequence similarity. The strain was an obligately anaerobic, non-pigmenting, non-spore-forming, non-motile, Gram-negative rod. Although the phenotypic and biochemical characteristics of the strain were similar to those of P. enoeca JCM 12259T, the cellular fatty acid composition of the isolate was significantly different from that of P. enoeca JCM 12259T (C18 : 1 ω9c and anteiso-C15 : 0 fatty acid content). Based on these data, we propose a novel Prevotella species, Prevotella pleuritidis sp. nov., with the type strain GTC 3021T (=JCM 14110T =CCUG 54350T). The G+C content of the type strain is 45.4 mol%.


2011 ◽  
Vol 61 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Peter Kämpfer ◽  
Chiu-Chung Young ◽  
Hans-Jürgen Busse ◽  
Shi-Yao Lin ◽  
P. D. Rekha ◽  
...  

A yellow-pigmented, Gram-negative, rod-shaped, non-spore-forming bacterium, strain CC-TPE-1T, was isolated from oil-contaminated soil near an oil refinery located in Kaohsiung County, Taiwan. 16S rRNA gene sequence analysis of strain CC-TPE-1T showed highest sequence similarity to Novosphingobium naphthalenivorans TUT562T (98.1 %), N. panipatense SM16T (97.9 %) and N. mathurense SM117T (97.6 %) and lower (<97 %) sequence similarity to all other Novosphingobium species. DNA–DNA hybridizations of strain CC-TPE-1T with N. naphthalenivorans DSM 18518T, N. panipatense SM16T and N. mathurense SM117T showed low relatedness of 30 % (reciprocal 35 %), 29.1 % (reciprocal 30.6 %) and 35 % (reciprocal 23.6 %), respectively. The major respiratory quinone was ubiquinone Q-10, the predominant fatty acid was C18 : 1 ω7c (49.9 %) and three 2-hydroxy fatty acids, C14 : 0 2-OH (8.2 %), C15 : 0 2-OH (2.45 %) and C16 : 0 2-OH (1.05 %), were detected. Polar lipids consisted mainly of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, two sphingoglycolipids, phosphatidylmonomethylethanolamine and several unidentified lipids, and a yellow pigment was also detected. The polyamine pattern contained the single major compound spermidine. Characterization by 16S rRNA gene sequence analysis, physiological parameters, pigment analysis and polyamine, ubiquinone, polar lipid and fatty acid compositions revealed that strain CC-TPE-1T represents a novel species of the genus Novosphingobium, for which we propose the name Novosphingobium soli sp. nov., with the type strain CC-TPE-1T (=DSM 22821T =CCM 7706T =CCUG 58493T).


2007 ◽  
Vol 57 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Yoshimi Benno

A bacterial strain isolated from human faeces, M-165T, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Parabacteroides. Strain M-165T was closely related to Parabacteroides merdae strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165T were similar to those of P. merdae, the isolate could be differentiated from P. merdae by means of API 20A tests for l-arabinose and l-rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to P. merdae JCM 9497T (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165T represents a novel species of the genus Parabacteroides, for which the name Parabacteroides johnsonii sp. nov. is proposed. The type strain is M-165T (=JCM 13406T=DSM 18315T).


1994 ◽  
Vol 15 (1-2) ◽  
pp. 215-225 ◽  
Author(s):  
Paul A. Rochelle ◽  
Barry A. Cragg ◽  
John C. Fry ◽  
R. John Parkes ◽  
Andrew J. Weightman

2005 ◽  
Vol 55 (4) ◽  
pp. 1563-1568 ◽  
Author(s):  
Jarkko Rapala ◽  
Katri A. Berg ◽  
Christina Lyra ◽  
R. Maarit Niemi ◽  
Werner Manz ◽  
...  

Thirteen bacterial isolates from lake sediment, capable of degrading cyanobacterial hepatotoxins microcystins and nodularin, were characterized by phenotypic, genetic and genomic approaches. Cells of these isolates were Gram-negative, motile by means of a single polar flagellum, oxidase-positive, weakly catalase-positive and rod-shaped. According to phenotypic characteristics (carbon utilization, fatty acid and enzyme activity profiles), the G+C content of the genomic DNA (66·1–68·0 mol%) and 16S rRNA gene sequence analysis (98·9–100 % similarity) the strains formed a single microdiverse genospecies that was most closely related to Roseateles depolymerans (95·7–96·3 % 16S rRNA gene sequence similarity). The isolates assimilated only a few carbon sources. Of the 96 carbon sources tested, Tween 40 was the only one used by all strains. The strains were able to mineralize phosphorus from organic compounds, and they had strong leucine arylamidase and chymotrypsin activities. The cellular fatty acids identified from all strains were C16 : 0 (9·8–19 %) and C17 : 1 ω7c (<1–5·8 %). The other predominant fatty acids comprised three groups: summed feature 3 (<1–2·2 %), which included C14 : 0 3-OH and C16 : 1 iso I, summed feature 4 (54–62 %), which included C16 : 1 ω7c and C15 : 0 iso OH, and summed feature 7 (8·5–28 %), which included ω7c, ω9c and ω12t forms of C18 : 1. A more detailed analysis of two strains indicated that C16 : 1 ω7c was the main fatty acid. The phylogenetic and phenotypic features separating our strains from recognized bacteria support the creation of a novel genus and species, for which the name Paucibacter toxinivorans gen. nov., sp. nov. is proposed. The type strain is 2C20T (=DSM 16998T=HAMBI 2767T=VYH 193597T).


2013 ◽  
Vol 167 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Jung Soh ◽  
Xiaoli Dong ◽  
Sean M. Caffrey ◽  
Gerrit Voordouw ◽  
Christoph W. Sensen

Sign in / Sign up

Export Citation Format

Share Document