scholarly journals Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau)

2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 874-882 ◽  
Author(s):  
Jose R. López ◽  
Ana L. Diéguez ◽  
Alejandra Doce ◽  
Elena De la Roca ◽  
Roberto De la Herran ◽  
...  

Five Gram-negative bacterial isolates, recovered from an outbreak that occurred in March 2006 in Huelva, Spain, affecting adult diseased cultured wedge sole [Dicologlossa cuneata (Moreau)], were characterized phenotypically and genotypically in order to clarify their taxonomic position. On the basis of 16S rRNA gene sequence analysis, the isolates were included in the genus Pseudomonas , within the Pseudomonas fluorescens -related species group, their closest relatives being the Pseudomonas jessenii and Pseudomonas koreensis subgroups. The highest sequence similarities were recorded with the type strains of Pseudomonas reinekei , P. moorei , P. umsongensis , P. jessenii and P. mohnii (99.4–99.3 % similarity). Sequence analysis of the housekeeping genes gyrB and rpoD clearly differentiated the isolates from currently described Pseudomonas species, the highest sequence similarities recorded to type strains being below 95 % for both genes. Phylogenetic analysis using concatenated sequences of the three genes showed Pseudomonas moraviensis DSM 16007T and P. koreensis DSM 16610T as the closest reference strains. DNA–DNA hybridization assays with related strains confirmed that these isolates belong to a novel species of the genus Pseudomonas , for which the name Pseudomonas baetica sp. nov. is proposed. The type strain is strain a390T ( = CECT 7720T  = LMG 25716T). The novel species could be easily distinguished from phylogenetically related species by several phenotypic characteristics, including gelatin hydrolysis, acid production from glucose and growth at 6 % NaCl. Virulence assays revealed that the novel species is pathogenic for wedge sole.

2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2878-2882 ◽  
Author(s):  
Long Jin ◽  
Kwang Kyu Kim ◽  
Hyung-Gwan Lee ◽  
Chi-Yong Ahn ◽  
Hee-Mock Oh

A Gram-stain-negative, aerobic, non-motile, rod- and coccus-shaped bacterium, designated strain B6-12T, was isolated from sediment collected from the River Geumho in South Korea. In comparative 16S rRNA gene sequence analysis, the novel strain appeared to be affiliated with the class Alphaproteobacteria and to be most closely related to Kaistia adipata KCTC 12095T, Kaistia dalseonensis DSM 18800T, Kaistia geumhonensis DSM 18799T, Kaistia granuli KCTC 12575T, Kaistia soli KACC 12605T and Kaistia terrae KACC 12910T, with sequence similarities of 96.2–99.1 %. The predominant ubiquinone in the isolate was Q-10, major fatty acids were C18 : 0, C18 : 1ω7c and C19 : 0ω8c cyclo, and genomic DNA G+C content was 63.0 mol%. Based on the phylogenetic and chemotaxonomic evidence and the results of DNA–DNA hybridizations, strain B6-12T represents a novel species in the genus Kaistia , for which the name Kaistia defluvii sp. nov. is proposed. The type strain is B6-12T ( = KCTC 23766T  = JCM 18034T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1274-1279 ◽  
Author(s):  
Chuang Li ◽  
Yuejing Zhang ◽  
Chongxi Liu ◽  
Haiyan Wang ◽  
Junwei Zhao ◽  
...  

A novel endophytic actinomycete, designated strain NEAU-TX2-2T, was isolated from moss and characterized using a polyphasic approach. The isolate was found to have morphological characteristics typical of the genus Microbispora . The isolate formed longitudinally paired spores on the tips of short sporophores that branched from aerial hyphae. Analysis of the 16S rRNA gene sequence supported the assignment of the novel strain to the genus Microbispora , and strain NEAU-TX2-2T exhibited 99.08 and 98.62 % gene sequence similarities to Microbispora amethystogenes JCM 3021T and Microbispora rosea subsp. rosea JCM 3006T, respectively. However two tree-making algorithms supported the position that strain NEAU-TX2-2T formed a distinct clade with M. rosea subsp. rosea JCM 3006T. A low level of DNA–DNA relatedness allowed the isolate to be differentiated from M. amethystogenes JCM 3021T and M. rosea subsp. rosea JCM 3006T. Moreover, strain NEAU-TX2-2T could also be distinguished from its closest phylogenetic relatives by morphological and physiological characteristics. Therefore, it is proposed that strain NEAU-TX2-2T represents a novel species of the genus Microbispora for which the name Microbispora bryophytorum sp. nov. is proposed. The type strain is NEAU-TX2-2T ( = CGMCC 4.7138T = DSM 46710T).


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4744-4749 ◽  
Author(s):  
Keun Sik Baik ◽  
Jong-Soon Choi ◽  
Joseph Kwon ◽  
Seong Chan Park ◽  
Yeoung Min Hwang ◽  
...  

A pink-pigmented, chemo-organotrophic bacterium, designated strain 03SUJ4T, was isolated from the freshwater of Juam reservoir, Republic of Korea (35° 03′ 43′′ N 127° 14′ 15′′ E). Cells were aerobic, Gram-reaction-negative and non-motile rods. Strain 03SUJ4T grew at pH 6–7 (optimum, pH 6) and at 15–30 °C (optimum, 25 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus Terriglobus , showing sequence similarities of 97.09 % and 96.82 % to Terriglobus roseus DSM 18391T and Terriglobus saanensis SP1PR4T, respectively. Low rpoB gene sequence similarity with members of the genus Terriglobus and different fingerprints with the repetitive primers BOX, ERIC and REP indicated that the isolate represented a novel species of the genus Terriglobus . The major cellular fatty acids were iso-C15 : 0, C16 : 0, C20 : 1ω9c, C14 : 0 and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). The DNA G+C content of strain 03SUJ4T was 63.2±0.1 mol% (mean±sd of three determinations). The predominant menaquinone was MK-8. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two unidentified phospholipids. Several phenotypic characteristics served to differentiate the novel isolate from recognized members of the genus Terriglobus . On the basis of the evidence presented in this study, a novel species, Terriglobus aquaticus sp. nov. is proposed for strain 03SUJ4T ( = KCTC 23332T = JCM 17517T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2485-2492 ◽  
Author(s):  
Yu Qin Li ◽  
Wen Li Tian ◽  
Chun Tao Gu

Three Gram-stain-positive bacterial strains, designated X0750T, X0278 and X0401, isolated from traditional yogurt in Tibet Autonomous Region, PR China, were characterized by a polyphasic approach, including sequence analyses of the 16S rRNA gene and three housekeeping genes (pheS, rpoA and recA), determination of average nucleotide identity (ANI) and average amino acid identity (AAI), in silico DNA–DNA hybridization (isDDH), fatty acid methyl ester (FAME) analysis and phenotypic characterization. Strain X0750T was phylogenetically related to the type strains of Weissella hellenica , Weissella bombi , Weissella paramesenteroides , Weissella jogaejeotgali , Weissella thailandensis , Weissella oryzae , Weissella cibaria and Weissella confusa , having 94.4–100 % 16S rRNA gene sequence similarities, 76.7–90.0 % pheS gene sequence similarities, 88.9–99.4 % rpoA gene sequence similarities and 77.6–92.8 % recA gene sequence similarities, respectively. ANI, isDDH and AAI values between strain X0750T and type strains of phylogenetically related species were less than 90.4, 40.9 and 92.8 % respectively, confirming that strain X0750T represents a novel species within the genus Weissella . Based upon the data obtained in the present study, a novel species, Weissella sagaensis sp. nov., is proposed and the type strain is X0750T(=NCIMB 15192T=CCM 8924T=LMG 31184T=CCTCC AB 2018403T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 399-406 ◽  
Author(s):  
Yin Shan Jiao ◽  
Hui Yan ◽  
Zhao Jun Ji ◽  
Yuan Hui Liu ◽  
Xin Hua Sui ◽  
...  

Two novel Gram-stain-negative strains (CCBAU 03422T and CCBAU 03415) isolated from root nodules of Sophora flavescens were classified phylogenetically into the genus Phyllobacterium based on the comparative analysis of 16S rRNA and atpD genes. They showed 99.8 % rRNA gene sequence similarities to Phyllobacterium brassicacearum LMG 22836T, and strain CCBAU 03422T showed 91.2 and 88.6 % atpD gene sequence similarities to strains Phyllobacterium endophyticum LMG 26470T and Phyllobacterium brassicacearum LMG 22836T, respectively. Strain CCBAU 03422T contained Q-10 as its major quinone and showed a cellular fatty acid profile, carbon source utilization and other phenotypic characteristics differing from type strains of related species. DNA–DNA relatedness (lower than 48.8 %) further confirmed the differences between the novel strains and the type strains of related species. Strain CCBAU 03422T could nodulate and fix nitrogen effectively on its original host plant, Sophora flavescens. Based upon the results mentioned above, a novel species named Phyllobacterium sophorae is proposed and the type strain is CCBAU 03422T ( = A-6-3T = LMG 27899T = HAMBI 3508T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1378-1383 ◽  
Author(s):  
Sooyeon Park ◽  
Doo-Sang Park ◽  
Kyung Sook Bae ◽  
Jung-Hoon Yoon

A Gram-reaction-negative, aerobic, non-spore-forming, non-motile and rod-shaped or ovoid bacterial strain, designated SSK6-1T, was isolated from the zone where the ocean and a freshwater spring meet at Jeju island, South Korea. Strain SSK6-1T grew optimally at 30 °C, at pH 7.0–7.5 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain SSK6-1T clustered with Phaeobacter daeponensis TF-218T and Phaeobacter caeruleus LMG 24369T, exhibiting sequence similarities of 98.6 and 98.3 %, respectively. The novel strain exhibited sequence similarities of 94.6–97.8 % to the type strains of other recognized species of the genera Phaeobacter and Leisingera . Strain SSK6-1T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and 11-methyl C18 : 1ω7c as the major fatty acids. The major polar lipids of strain SSK6-1T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain SSK6-1T was 64.6 mol% and its DNA–DNA relatedness values with P. daeponensis TF-218T and P. caeruleus were 21 and 25 %, respectively. The differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain SSK6-1T is separate from recognized Phaeobacter species. On the basis of the data presented, strain SSK6-1T is considered to represent a novel species of the genus Phaeobacter , for which the name Phaeobacter aquaemixtae sp. nov. is proposed. The type strain is SSK6-1T ( = KCTC 32538T = CECT 8399T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 3036-3041 ◽  
Author(s):  
Ana M. Marqués ◽  
César Burgos-Díaz ◽  
Francisco José Aranda ◽  
José Antonio Teruel ◽  
Àngels Manresa ◽  
...  

A novel Gram-negative-staining strain, designated 6.2ST, was isolated from a soil sample and identified as a biosurfactant producer. Its taxonomic position was investigated using a polyphasic approach. The cells were non-motile, non-spore-forming rods. The organism grew optimally at 30-37 °C, with 0–3 % (w/v) NaCl, and at pH 7.0. Based on 16S rRNA gene sequence analysis, strain 6.2ST was found to be a member of the genus Sphingobacterium and was most closely related to four type species of the genus, showing sequence similarities of 96.8–98.9 %. Partial chaperonin 60 (cpn60) gene sequence analysis was useful in resolving the phylogenetic relationships between strain 6.2ST and closely related taxa, with similarities ranging from 85.5 % (with Sphingobacterium thalpophilum DSM 11723T) to 90.3 % (with Sphingobacterium canadense CR11T and Sphingobacterium multivorum JCM 21156T). The results of DNA–DNA hybridization experiments between the novel strain and its closest relatives gave a DNA–DNA relatedness value of less than 70 %, and consequently confirmed that this new strain did not belong to a previously described species of the genus Sphingobacterium . The major fatty acids were summed feature 3 (iso-C15 : 0 2 OH and/or C16 : 1ω7c); iso-C15 : 0; iso-C17 : 0 3-OH and C16 : 0. The G+C content of the genomic DNA was 40.0 mol%. According to its phenotypic and genotypic characteristics and the phylogenetic data, strain 6.2ST represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium detergens sp. nov. is proposed. The type strain is 6.2ST ( = CECT 7938T = LMG 26465T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 3950-3957 ◽  
Author(s):  
Jerri E. Zilli ◽  
Alexandre C. Baraúna ◽  
Krisle da Silva ◽  
Sofie E. De Meyer ◽  
Eliane N. C. Farias ◽  
...  

Root nodule bacteria were isolated from Centrolobium paraense Tul. grown in soils from the Amazon region, State of Roraima (Brazil). 16S rRNA gene sequence analysis of seven strains (BR 10247T, BR 10296, BR 10297, BR 10298, BR 10299, BR 10300 and BR 10301) placed them in the genus Bradyrhizobium with the closest neighbours being the type strains of Bradyrhizobium paxllaeri (98.8 % similarity), Bradyrhizobium icense (98.8 %), Bradyrhizobium lablabi (98.7 %), Bradyrhizobium jicamae (98.6 %), Bradyrhizobium elkanii (98.6 %), Bradyrhizobium pachyrhizi (98.6 %) and Bradyrhizobium retamae (98.3 %). This high similarity, however, was not confirmed by the intergenic transcribed spacer (ITS) 16S–23S rRNA region sequence analysis nor by multi-locus sequence analysis. Phylogenetic analyses of five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EK05T ( = LMG 24129T) to be the most closely related type strain (95.7 % sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [major components being C16 : 0 and summed feature 8 (18 : 1ω6c/18 : 1ω7c)], DNA G+C content, slow growth rate and carbon compound utilization patterns, supported the placement of the novel strains in the genus Bradyrhizobium . Results of DNA–DNA relatedness studies and physiological data (especially carbon source utilization) differentiated the strains from the closest recognized species of the genus Bradyrhizobium . Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) placed the novel species in a new branch within the genus Bradyrhizobium . Based on the current data, these seven strains represent a novel species for which the name Bradyrhizobium neotropicale sp. nov. is proposed. The type strain is BR 10247T ( = HAMBI 3599T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 189-194 ◽  
Author(s):  
Antje Rusch ◽  
Shaer Islam ◽  
Pratixa Savalia ◽  
Jan P. Amend

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-AprilT. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-AprilT grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-AprilT was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-AprilT belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8 %), Burkholderia phytofirmans (98.8 %), Burkholderia caledonica (98.4 %) and Burkholderia sediminicola (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia , for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-AprilT ( = DSM 28142T = LMG 28183T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1790-1798 ◽  
Author(s):  
V. Venkata Ramana ◽  
S. Kalyana Chakravarthy ◽  
P. Shalem Raj ◽  
B. Vinay Kumar ◽  
E. Shobha ◽  
...  

Four strains (JA310T, JA531T, JA447 and JA490) of red to reddish brown pigmented, rod-shaped, motile and budding phototrophic bacteria were isolated from soil and freshwater sediment samples from different geographical regions of India. All strains contained bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The major cellular fatty acid of strains JA310T and JA531T was C18 : 1ω7c, the quinone was Q-10 and polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an aminohopanoid and an unidentified aminolipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that all strains clustered with species of the genus Rhodopseudomonas in the class Alphaproteobacteria . Strains JA531T, JA447 and JA490 were genotypically (>80 % related based on DNA–DNA hybridization) and phenotypically closely related to each other and the three strains were distinct from strain JA310T (33 % related). Furthermore, all four strains had less than 48 % relatedness (DNA–DNA hybridization) with type strains of members of the genus Rhodopseudomonas , i.e. Rhodopseudomonas palustris ATCC 17001T, Rhodopseudomonas faecalis JCM 11668T and Rhodopseudomonas rhenobacensis DSM 12706T. The genomic DNA G+C contents of strains JA310T and JA531T were 63.8 and 62.4 mol%, respectively. On the basis of phenotypic, chemotaxonomic and molecular genetic evidence, it is proposed that strains JA310T ( = NBRC 106083T = KCTC 5839T) and JA531T ( = NBRC 107575T = KCTC 5841T) be classified as the type strains of two novel species of the genus Rhodopseudomonas , Rhodopseudomonas parapalustris sp. nov. and Rhodopseudomonas harwoodiae sp. nov., respectively. In addition, we propose that strain DSM 123T ( = NBRC 100419T) represents a novel species, Rhodopseudomonas pseudopalustris sp. nov., since this strain differs genotypically and phenotypically from R. palustris ATCC 17001T and other members of the genus Rhodopseudomonas . An emended description of R. palustris is also provided.


Sign in / Sign up

Export Citation Format

Share Document