Halobellus limi sp. nov. and Halobellus salinus sp. nov., isolated from two marine solar salterns

2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1307-1313 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin Yang ◽  
Yu-Guang Zhou ◽  
Hong-Can Liu ◽  
Pei-Jin Zhou ◽  
...  

Two halophilic archaea, strains TBN53T and CSW2.24.4T, were characterized to elucidate their taxonomic status. Strain TBN53T was isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China, whereas strain CSW2.24.4T was isolated from a saltern crystallizer in Victoria, Australia. Cells of the two strains were pleomorphic, stained Gram-negative and produced red-pigmented colonies. Strain TBN53T was able to grow at 25–55 °C (optimum 45 °C), with 1.4–5.1 M NaCl (optimum 2.6–3.9 M NaCl), with 0–1.0 M MgCl2 (optimum 0–0.1 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0), whereas strain CSW2.24.4T was able to grow at 25–45 °C (optimum 37 °C), with 2.6–5.1 M NaCl (optimum 3.4 M NaCl), with 0.01–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0–7.5). Cells of the two isolates lysed in distilled water. The minimum NaCl concentrations that prevented cell lysis were 8 % (w/v) for strain TBN53T and 12 % (w/v) for strain CSW2.24.4T. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate, with two glycolipids chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. Trace amounts of other unidentified lipids were also detected. On the basis of 16S rRNA gene sequence analysis, strains TBN53T and CSW2.24.4T showed 94.1 % similarity to each other and were closely related to Halobellus clavatus TNN18T (95.0 and 94.7 % similarity, respectively). Levels of rpoB′ gene sequence similarity between strains TBN53T and CSW2.24.4T, and between these strains and Halobellus clavatus TNN18T were 88.5, 88.5 and 88.1 %, respectively. The DNA G+C contents of strains TBN53T and CSW2.24.4T were 69.2 and 67.0 mol%, respectively. The level of DNA–DNA relatedness between strain TBN53T and strain CSW2.24.4T was 25 %, and these two strains showed low levels of DNA–DNA relatedness with Halobellus clavatus TNN18T (30 and 29 % relatedness, respectively). Based on these phenotypic, chemotaxonomic and phylogenetic properties, two novel species of the genus Halobellus are proposed to accommodate these two strains, Halobellus limi sp. nov. (type strain TBN53T = CGMCC 1.10331T = JCM 16811T) and Halobellus salinus sp. nov. (type strain CSW2.24.4T = DSM 18730T = CGMCC 1.10710T = JCM 14359T).

Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Alexis Criscuolo ◽  
...  

A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus , most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA–DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK–6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1373-1377 ◽  
Author(s):  
Xiao-Xia Zhang ◽  
Xue Tang ◽  
Rizwan Ali Sheirdil ◽  
Lei Sun ◽  
Xiao-Tong Ma

Two strains (J3-AN59T and J3-N84) of Gram-stain-negative, aerobic and rod-shaped bacteria were isolated from the roots of fresh rice plants. The 16S rRNA gene sequence similarity results showed that the similarity between strains J3-AN59T and J3-N84 was 100 %. Both strains were phylogenetically related to members of the genus Rhizobium , and they were most closely related to Rhizobium tarimense ACCC 06128T (97.43 %). Similarities in the sequences of housekeeping genes between strains J3-AN59T and J3-N84 and those of recognized species of the genus Rhizobium were less than 90 %. The polar lipid profiles of both strains were predominantly composed of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminophospholipid. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The DNA G+C contents of J3-AN59T and J3-N84 were 55.7 and 57.1 mol%, respectively. The DNA–DNA relatedness value between J3-AN59T and J3-N84 was 89 %, and strain J3-AN59T showed 9 % DNA–DNA relatedness to R. tarimense ACCC 06128T, the most closely related strain. Based on this evidence, we found that J3-AN59T and J3-N84 represent a novel species in the genus Rhizobium and we propose the name Rhizobium rhizoryzae sp. nov. The type strain is J3-AN59T ( = ACCC 05916T = KCTC 23652T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2234-2238 ◽  
Author(s):  
Ahyoung Choi ◽  
Jang-Cheon Cho

Gram-negative strains, motile by a single polar flagellum, non-pigmented and with a curved rod-shaped morphology, designated IMCC1826T and IMCC1883, were isolated from a surface seawater sample from the Yellow Sea. The two strains shared 99.9 % 16S rRNA gene sequence similarity and showed 92 % DNA–DNA relatedness, suggesting that they belonged to the same genomic species. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were related most closely to the type strain of Thalassolituus oleivorans with a sequence similarity of 96.4 % and formed a robust phyletic lineage with T. oleivorans . DNA–DNA relatedness between the two strains and T. oleivorans DSM 14913T was 8.7–11.6 %. A putative alkane hydroxylase (alkB) gene was detected in strain IMCC1826T by PCR, but the amino acid sequence of the gene was distantly related to that of the AlkB homologue of T. oleivorans DSM 14913T. As expected from the presence of the alkB gene, the new strains utilized n-tetradecane and n-hexadecane as a carbon source. The DNA G+C content was 54.6–56.0 mol% and the main isoprenoid quinone detected was Q-9. Polar lipids of strain IMCC1826T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and amino-group-containing lipids. On the basis of taxonomic data obtained in this study, strains IMCC1826T and IMCC1883 represent a novel species of the genus Thalassolituus , for which the name Thalassolituus marinus sp. nov. is proposed, with IMCC1826T ( = KCTC 23084T = NBRC 107590T) as the type strain.


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3079-3085 ◽  
Author(s):  
Lyudmila A. Romanenko ◽  
Naoto Tanaka ◽  
Vassilii I. Svetashev

The taxonomic status of two aerobic, Gram-stain-negative, orange–reddish pigmented, motile, rod-shaped bacteria, designated KMM 9415T and KMM 9416, isolated from a deep surface-sediment sample from the Sea of Japan, was defined. Comparative 16S rRNA gene sequence analysis of strains KMM 9415T and KMM 9416 revealed their affiliation to the genus Devosia with a high sequence similarity of 98.5 % to both Devosia psychrophila DSM 22950T and Devosia glacialis LMG 26051T. The novel strains were characterized by the predominance of the fatty acid C18 : 1ω7c followed by C16 : 1 and C16 : 0. The major isoprenoid quinone was Q-10 and the polar lipids comprised phosphatidylglycerol, phosphatidic acid and unknown glycolipids. The DNA–DNA hybridization value of 88 % between the novel strains KMM 9415T and KMM 9416 confirmed their assignment to the same species. The values of DNA relatedness determined for strain KMM 9415T and the closely related strains D. psychrophila DSM 22950T and D. glacialis LMG 26051T were 21 % and 23 %, respectively. Based on distinctive phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness, it can be concluded that the novel strains KMM 9415T and KMM 9416 represent a novel species within the genus Devosia , for which the name Devosia submarina sp. nov. is proposed. The type strain is the strain KMM 9415T ( = NRIC 0884T = JCM 18935T).


Author(s):  
Regina Rettenmaier ◽  
Nils Thieme ◽  
Johanna Streubel ◽  
Luca Di Bello ◽  
Marie-Louise Kowollik ◽  
...  

Strain MD1T is an anaerobic, Gram-stain-negative bacterium isolated from a lab-scale biogas fermenter fed with maize silage. It has a rod-shaped morphology with peritrichously arranged appendages and forms long chains of cells and coccoid structures. The colonies of MD1T were white, circular, slightly convex and had a smooth rim. The isolate is mesophilic, displaying growth between 25 and 45 °C with an optimum at 40 °C. It grew at pH values of pH 6.7–8.2 (optimum, pH 7.1) and tolerated the addition of up to 1.5% (w/v) NaCl to the medium. The main cellular fatty acids of MD1T are C14:0 DMA and C16:0. Strain MD1T fermented xylose, arabinose, glucose, galactose, cellobiose, maltose, maltodextrin10, lactose starch, and xylan, producing mainly 2-propanol and acetic acid. The genome of the organism has a total length of 4163427 bp with a G+C content of 38.5 mol%. The two closest relatives to MD1T are Mobilitalea sibirica P3M-3T and Anaerotaenia torta FH052T with 96.44 or 95.8 % 16S rRNA gene sequence similarity and POCP values of 46.58 and 50.58%, respectively. As MD1T showed saccharolytic and xylanolytic properties, it may play an important role in the biogas fermentation process. Closely related variants of MD1T were also abundant in microbial communities involved in methanogenic fermentation. Based on morphological, phylogenetic and genomic data, the isolated strain can be considered as representing a novel genus in the family Lachnospiraceae , for which the name Variimorphobacter saccharofermentans gen. nov., sp. nov. (type strain MD1T=DSM 110715T=JCM 39125T) is proposed.


Author(s):  
Maik Hilgarth ◽  
Johannes Redwitz ◽  
Matthias A. Ehrmann ◽  
Rudi F. Vogel ◽  
Frank Jakob

As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880T and TMW 2.1889T) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880T are non-motile, thin/short rods, and cells of TMW 2.1889T are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus Bombella . Strain TMW 2.1880T is most closely related to the type strain of Bombella intestini with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880T has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889T is most closely related to the type strain of Bombella apis with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889T has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8, respectively, and additionally C14 : 0 2-OH only for TMW 2.1880T and C14 : 0 only for TMW 2.1889T. Based on polyphasic evidence, the two isolates from honeycombs of Apis mellifera represent two novel species of the genus Bombella , for which the names Bombella favorum sp. nov and Bombella mellum sp. nov. are proposed. The designated respective type strains are TMW 2.1880T (=LMG 31882T=CECT 30114T) and TMW 2.1889T (=LMG 31883T=CECT 30113T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2828-2834 ◽  
Author(s):  
S. Kalyana Chakravarthy ◽  
E. V. V. Ramaprasad ◽  
E. Shobha ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains (JA266T and JA333) of Gram-negative, rod-shaped, phototrophic, purple non-sulfur bacteria were isolated from a freshwater fish pond and an industrial effluent. Both strains were capable of phototrophic and chemotrophic growth. Bacteriochlorophyll a and carotenoids of the spirilloxanthin series were present as photosynthetic pigments. The major fatty acid for both strains was C18 : 1ω7c (>65 %), with minor amounts of 11-methyl C18 : 1ω7c, C16 : 0, C16 : 1ω7c and C18 : 0 also present. Both strains have the lamellar type of intracellular photosynthetic membranes. Ubiquinone-10 (Q10) and rhodoquinone-10 (RQ10) were present as primary quinone components. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine were the major polar lipids, while minor amounts of amino lipids (AL1, AL2) and an unidentified lipid (L1) were common to both strains. The DNA G+C contents of strains JA266T and JA333 were 71.3 and 69.9 mol%, respectively. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that both strains clustered with members of the genus Rhodoplanes in the class Alphaproteobacteria . Strains JA266T and JA333 had gene sequence similarity of 98.7 and 98.9 % with Rhodoplanes serenus TUT3530T, 96.4 and 96.5 % with Rhodoplanes elegans AS130T, respectively, and less than 96 % with other members of the genus Rhodoplanes . 16S rRNA gene sequence similarity between the two strains was 99.3 % and they exhibited high (84.7 %) relatedness based on DNA–DNA hybridization. Furthermore, both strains had less than 65 % DNA–DNA relatedness with the type strain R. serenus TUT3530T. On the basis of phenotypic and genotypic data, it is proposed that strain JA266T be classified as a novel species of the genus Rhodoplanes , with the species name Rhodoplanes piscinae sp. nov. The type strain of the proposed novel species is JA266T ( = JCM 14934T = KCTC 5627T), while strain JA333 ( = NBRC 107574 = KCTC 5962) is an additional strain.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 1982-1986 ◽  
Author(s):  
Shigeto Otsuka ◽  
Hiroyuki Ueda ◽  
Taku Suenaga ◽  
Yoshihito Uchino ◽  
Moriyuki Hamada ◽  
...  

The taxonomic properties of strain DC2a-G7T, a Gram-negative, ovoid to rod-shaped, gellan gum-lysing bacterium, were examined. The 16S rRNA gene sequence similarity showed that DC2a-G7T is a member of the phylum Verrucomicrobia and the closest type strain of a species with a validly published name is Verrucomicrobium spinosum DSM 4136T, with a sequence similarity of 91.2 %. In addition to this similarity value lower than 95 %, the absence of prostheca, the orangey-red colony colour and the compositions of the major menaquinones and polar lipids also supported the differentiation of this bacterium from the genus Verrucomicrobium . Here, we propose the name Roseimicrobium gellanilyticum gen. nov., sp. nov. for the isolate. The type strain of Roseimicrobium gellanilyticum is DC2a-G7T ( = NBRC 108606T = DSM 25532T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 926-932 ◽  
Author(s):  
Soo-Jin Kim ◽  
Ji-Young Moon ◽  
Jun-Muk Lim ◽  
Jae-Hyung Ahn ◽  
Hang-Yeon Weon ◽  
...  

Two strains, designated 5413J-26T and KIS18-15T, were isolated from the air and forest soil, respectively, in South Korea. Cells of the two strains were Gram-stain-negative, aerobic, polar-flagellated and rod-shaped. According to the phylogenetic tree, strains 5413J-26T and KIS18-15T fell into the cluster of Sphingomonas sensu stricto. Strain 5413J-26T showed the highest sequence similarities with Sphingomonas trueperi LMG 2142T (96.6 %), Sphingomonas molluscorum KMM 3882T (96.5 %), Sphingomonas azotifigens NBRC 15497T (96.3 %) and Sphingomonas pituitosa EDIVT (96.1 %), while strain KIS18-15T had the highest sequence similarity with Sphingomonas soli T5-04T (96.8 %), Sphingomonas pituitosa EDIVT (96.6 %), Sphingomonas leidyi ATCC 15260T (96.6 %), Sphingomonas asaccharolytica NBRC 15499T (96.6 %) and Sphingomonas koreensis JSS26T (96.6 %). The 16S rRNA gene sequence similarity between strains 5413J-26T and KIS18-15T was 95.4 %. Ubiquinone 10 was the predominant respiratory quinone and homospermidine was the major polyamine. The major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and several unidentified phospholipids and lipids. The main cellular fatty acids (>10 % of the total fatty acids) of strain 5413J-26T were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c), summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C14 : 0 2-OH, and those of strain KIS18-15T were summed feature 8 and C16 : 0. Based on the results of 16S rRNA gene sequence analysis, and physiological and biochemical characterization, two novel species with the suggested names Sphingomonas aerophila sp. nov. (type strain 5413J-26T = KACC 16533T = NBRC 108942T) and Sphingomonas naasensis sp. nov. (type strain KIS18-15T = KACC 16534T = NBRC 108943T) are proposed.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3168-3173 ◽  
Author(s):  
P. Nupur ◽  
T. N. R. Srinivas ◽  
S. Takaichi ◽  
P. Anil Kumar

A novel Gram-staining-negative, purple non-sulfur bacterium, strain AK41T, was isolated from a sediment sample collected from Coringa mangrove forest, Andhra Pradesh, India. A red–brownish-coloured culture was obtained on modified Pfennig medium after enrichment with 2 % NaCl and 0.3 % pyruvate under 2000 lx illumination. Individual cells were ovoid–rod-shaped and non-motile. Bacteriochlorophyll a and carotenoids of the spheroidene series were present as photosynthetic pigments. Strain AK41T was halophilic and grew photoheterotrophically with a number of organic compounds as carbon sources and electron donors. It was unable to grow photoautotrophically. It did not utilize sulfide or thiosulfate as electron donors. The fatty acids were found to be dominated by C16 : 0 and C18 : 1ω7c. Strain AK41T contained phosphatidylglycerol, phosphatidylethanolamine, an unknown aminolipid and four unknown lipids as polar lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK41T was 68.9 mol%. 16S rRNA gene sequence analysis indicated that strain AK41T was a member of the genus Rhodovulum and was closely related to Rhodovulum sulfidophilum , with 96.0 % similarity to the type strain; the 16S rRNA gene sequence similarity to the type strains of other species of the genus Rhodovulum was 93.9–95.8 %. Phylogenetic analyses indicated that strain AK41T clustered with the type strains of Rhodovulum marinum , Rdv. kholense , Rdv. sulfidophilum and Rdv. visakhapatnamense with sequence similarity of 95.9–96.2 %. Based on data from the current study, strain AK41T is proposed to represent a novel species of the genus Rhodovulum , for which the name Rhodovulum mangrovi sp. nov. is proposed. The type strain of Rhodovulum mangrovi is AK41T ( = MTCC 11825T = JCM 19220T).


Sign in / Sign up

Export Citation Format

Share Document